
  

CHAPTER  2

ALGORITHM ANALYSIS

【 Definition 】 An algorithm is a finite set of instructions 
that, if followed, accomplishes a particular task.   In 
addition,  all algorithms must satisfy the following criteria:

(1)   Input    There are zero or more quantities that are externally 
supplied.

(2)   Output    At least one quantity is produced.

(3)   Definiteness    Each instruction is clear and unambiguous.

(4)   Finiteness    If we trace out the instructions of an algorithm, then 
for all cases, the algorithm terminates after finite number of steps.

(5)   Effectiveness    Every instruction must be basic enough to be 
carried out, in principle, by a person using only pencil and paper.  It is 
not enough that each operation be definite as in(3); it also must be 
feasible.
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Note: A program is written in some programming language, 
and does not have to be finite (e.g. an operation system).

           An algorithm can be described by human languages, 
flow charts, some programming languages, or pseudo-
code.

〖 Example  〗 Selection Sort:  Sort a set of n  1 integers in 
increasing order.

From those integers that are currently unsorted, find the 
smallest and place it next in the sorted list.

 Where and how
   are they stored?  Where?for ( i = 0; i < n; i++) {

    Examine list[i] to list[n1] and suppose that 
the smallest integer is at list[min];  Interchange list[i] and list[min];

}

Sort = Find the smallest integer + Interchange it with 
list[i].

  Algorithm  in 
   pseudo-code
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§1   What to Analyze

 Machine & compiler-dependent run times. 

 Time & space complexities : machine & compiler-in
dependent.

• Assumptions:

  instructions are executed sequentially

  each instruction is simple, and takes exactly one time unit

  integer size is fixed and we have infinite memory

• Typically the following two functions are analyzed:
   Tavg(N) & Tworst(N)  --  the average and worst case time 

complexities, respectively, as functions of input size N.

If there is more than one input, these functions 
may have more than one argument.
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§1  What to Analyze

〖 Example  〗 Matrix addition

void  add ( int  a[ ][ MAX_SIZE ], 
                   int  b[ ][ MAX_SIZE ], 
                   int  c[ ][ MAX_SIZE ],
                   int  rows,  int  cols )
{

    int  i,  j ;

    for ( i = 0; i < rows; i++ )

          for ( j = 0; j < cols; j++ )

                c[ i ][ j ] = a[ i ][ j ] + b[ i ][ j ];

}

/* rows + 1 */

/* rows(cols+1) */ 

/* rows  cols */  

T(rows, cols ) =  2 rows  cols + 2rows + 1

Q: What shall we do
 if rows >> cols?

A: Exchange 
rows and cols.
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〖 Example〗 Iterative 
function for summing 
a list of numbers

float  sum ( float  list[ ],  int  n )
{  /* add a list of numbers */
   float  tempsum = 0; 
   int  i ; 
   for ( i = 0; i < n; i++ ) 

       tempsum  += list [ i ] ;

   return  tempsum;
}

/* count = 1 */

/* count ++ */
/* count ++ for last execution of for */

/* count ++ */

/* count ++ */

Tsum ( n ) = 2n + 3

〖 Example〗 Recursive 
function for summing a 
list of numbers

float  rsum ( float  list[ ],  int  n )
{  /* add a list of numbers */
   if ( n )    
       return rsum(list, n1) + list[n  1];

   return   0;
}

/* count ++ */

/* count ++ */
/* count ++ */

Trsum ( n ) = 2n + 2

But it takes more time to 
compute each step.

§1  What to Analyze
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§1  What to Analyze

        Is it really necessary 
to count the exact 
number of steps ?

Uhhh ...
 I don’t think so.Why not?

Because
 it drives me crazy!

          So it’s too complicated sometimes.
But does it worth the effort?

Take the iterative and 
recursive programs for summing 

a list for example --- if you think 2n+2 is 
less than 2n+3, try a large n and 

you’ll be surprised !

          I see ...
Then what’s the point of 

this Tp stuff?

Good question !
Let’s ask the students ...
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§2   Asymptotic Notation  ( , , , o )

The point of counting the steps is to predict the 
growth in run time as the N change, and thereby 
compare the time complexities of two programs.  
So what we really want to know is the asymptotic 
behavior of Tp.

Suppose Tp1 ( N ) = c1N2 + c2N and Tp2 ( N ) = c3N.  
Which one is faster?

No matter what  c1, c2, and c3 are, there will be an n0 
such that Tp1 ( N ) > Tp2 ( N ) for all N > n0.

I see!  So as long as I know that 
Tp1 is about N2 and Tp2 is about N, then for 

sufficiently large N,  P2 will be faster! 
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§2  Asymptotic Notation

【 Definition 】  T (N) = O( f (N) ) if there are positive constants c 
and n0 such that  T (N)  c  f (N) for all N  n0.

【 Definition 】  T (N) = ( g(N) ) if there are positive constants c 
and n0 such that  T (N)  c  g(N) for all N  n0.

【 Definition 】  T (N) = ( h(N) ) if and only if T (N) = O( h(N) ) 
and T (N) = ( h(N) ) .

Note: 
  2N + 3 = O( N ) = O( Nk1 ) = O( 2N ) =   We shall always take the 

smallest f (N).

  2N + N2 = ( 2N ) = ( N2 ) = ( N ) = ( 1 ) =    We shall always 
take the largest g(N).

【 Definition 】  T (N) = o( p(N) ) if T (N) = O( p(N) ) and T (N)  
( p(N) ) .
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§2  Asymptotic Notation

Rules of Asymptotic Notation 

 If T1 (N) = O( f (N) ) and T2 (N) = O( g(N) ), then
(a) T1 (N) + T2 (N) = max( O( f (N)), O( g(N)) ),
(b) T1 (N) * T2 (N) = O( f (N) * g(N) ).

 If T (N) is a polynomial of degree k, then T (N) = ( N k ).

 logk N = O(N) for any constant k.  This tells us that 
logarithms grow very slowly.

Note:  When compare the complexities of two programs 
asymptotically, make sure that N is sufficiently large.

    For example, suppose that Tp1 ( N ) = 106N and Tp2 ( N ) = N2.  
Although it seems that ( N2 ) grows faster than ( N ), but if N 
< 106,  P2 is still faster than P1.

Note:  When compare the complexities of two programs 
asymptotically, make sure that N is sufficiently large.

    For example, suppose that Tp1 ( N ) = 106N and Tp2 ( N ) = N2.  
Although it seems that ( N2 ) grows faster than ( N ), but if N 
< 106,  P2 is still faster than P1.
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§2  Asymptotic Notation

Input size  n 
Time Name  1    2      4            8                           16                      32 

1 
log n 

n 
n log n 

n2 
n3 

constant 
logarithmic 

linear 
log linear 
quadratic 

cubic 

 1    1      1            1                             1                        1 
 0    1      2            3                             4                        5 
 1    2      4            8                           16                      32 
 0    2      8          24                           64                    160 
 1    4    16          64                         256                  1024 
 1    8    64        512                       4096                32768 

2n 
n ! 

exponential 
factorial 

 2    4    16        256                     65536      4294967296 
 1    2    24    40326     2092278988000     26313  1033 
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§2  Asymptotic Notation

Time for f (n) instructions on a 109 instr/sec computer
n f(n)=n log2n n2 n3 n4 n10 2n
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100,000

1,000,000

.01s

.02s

.03s

.04s

.05s

.10s

1.00s

10s

100s

1.0ms

.03s

.09s

.15s

.21s

.28s

.66s

9.96s

130.03s

1.66ms

19.92ms

.1s

.4s

.9s

1.6s

2.5s

10s

1ms

100ms

10sec

16.67min

1s

8s

27s

64s

125s

1ms

1sec

16.67min

11.57d

31.71yr

10s

160s

810s

2.56ms

6.25ms

100ms

16.67min

115.7d

3171yr

3.17107yr

10sec

2.84hr

6.83d

121.36d

3.1yr

3171yr

3.171013yr

3.171023yr

3.171033yr

3.171043yr

1s

1ms

1sec

18.3min

13d

41013yr

3210283yr

s = microsecond = 10-6 seconds
ms = millisecond = 10-3 seconds
sec = seconds

min = minutes            yr = years
hr = hours
d = days

n

12/15



  

〖 Example  〗 Matrix addition

void  add ( int  a[ ][ MAX_SIZE ], 
                   int  b[ ][ MAX_SIZE ], 
                   int  c[ ][ MAX_SIZE ],
                   int  rows,  int  cols )
{

    int  i,  j ;

    for ( i = 0; i < rows; i++ )

          for ( j = 0; j < cols; j++ )

                c[ i ][ j ] = a[ i ][ j ] + b[ i ][ j ];

}

/*  (rows) */

/*  (rows  cols ) */ 

/*  (rows  cols ) */  

T(rows, cols ) =  (rows  cols ) 

§2  Asymptotic Notation
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§2  Asymptotic Notation

 General Rules

 FOR LOOPS: The running time of a for loop is at most the 
running time of the statements inside the for loop (including 
tests) times the number of iterations.

 NESTED FOR LOOPS: The total running time of a statement 
inside a group of nested loops is the running time of the 
statements multiplied by the product of the sizes of all the for 
loops.

 CONSECUTIVE STATEMENTS: These just add (which means 
that the maximum is the one that counts).

 IF / ELSE: For the fragment
if ( Condition )  S1;
else  S2;

the running time is never more than the running time of the 
test plus the larger of the running time of S1 and S2.
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§2  Asymptotic Notation

 RECURSIONS:

〖 Example  〗 Fibonacci number:  
Fib(0) = Fib(1) = 1,  Fib(n) = Fib(n1) + Fib(n2)

long int  Fib ( int  N )
{

if  ( N <= 1 )

    return  1;

else

    return  Fib( N  1 ) + Fib( N  2 );

}

/* O( 1 ) */

/* O( 1 ) */

/*O(1)*/

/* T ( N ) */

/*T(N 1)*/ /*T(N 2)*/

T(N) = T(N 1) + T(N 2) + 2   Fib(N)

Proof by 
induction

NN

N 

















3

5
)(Fib

2

3
T(N) grows exponentially

Q: Why is it 
so bad?
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