

CHAPTER 2

ALGORITHM ANALYSIS

【 Definition 】 An algorithm is a finite set of instructions
that, if followed, accomplishes a particular task. In
addition, all algorithms must satisfy the following criteria:

(1) Input There are zero or more quantities that are externally
supplied.

(2) Output At least one quantity is produced.

(3) Definiteness Each instruction is clear and unambiguous.

(4) Finiteness If we trace out the instructions of an algorithm, then
for all cases, the algorithm terminates after finite number of steps.

(5) Effectiveness Every instruction must be basic enough to be
carried out, in principle, by a person using only pencil and paper. It is
not enough that each operation be definite as in(3); it also must be
feasible.

1/15

Note: A program is written in some programming language,
and does not have to be finite (e.g. an operation system).

 An algorithm can be described by human languages,
flow charts, some programming languages, or pseudo-
code.

〖 Example 〗 Selection Sort: Sort a set of n  1 integers in
increasing order.

From those integers that are currently unsorted, find the
smallest and place it next in the sorted list.

 Where and how
 are they stored? Where?for (i = 0; i < n; i++) {

 Examine list[i] to list[n1] and suppose that
the smallest integer is at list[min]; Interchange list[i] and list[min];

}

Sort = Find the smallest integer + Interchange it with
list[i].

 Algorithm in
 pseudo-code

2/15

§1 What to Analyze

 Machine & compiler-dependent run times.

 Time & space complexities : machine & compiler-in
dependent.

• Assumptions:

  instructions are executed sequentially

  each instruction is simple, and takes exactly one time unit

  integer size is fixed and we have infinite memory

• Typically the following two functions are analyzed:
 Tavg(N) & Tworst(N) -- the average and worst case time

complexities, respectively, as functions of input size N.

If there is more than one input, these functions
may have more than one argument.

3/15

§1 What to Analyze

〖 Example 〗 Matrix addition

void add (int a[][MAX_SIZE],
 int b[][MAX_SIZE],
 int c[][MAX_SIZE],
 int rows, int cols)
{

 int i, j ;

 for (i = 0; i < rows; i++)

 for (j = 0; j < cols; j++)

 c[i][j] = a[i][j] + b[i][j];

}

/* rows + 1 */

/* rows(cols+1) */

/* rows  cols */

T(rows, cols) = 2 rows  cols + 2rows + 1

Q: What shall we do
 if rows >> cols?

A: Exchange
rows and cols.

4/15

〖 Example〗 Iterative
function for summing
a list of numbers

float sum (float list[], int n)
{ /* add a list of numbers */
 float tempsum = 0;
 int i ;
 for (i = 0; i < n; i++)

 tempsum += list [i] ;

 return tempsum;
}

/* count = 1 */

/* count ++ */
/* count ++ for last execution of for */

/* count ++ */

/* count ++ */

Tsum (n) = 2n + 3

〖 Example〗 Recursive
function for summing a
list of numbers

float rsum (float list[], int n)
{ /* add a list of numbers */
 if (n)
 return rsum(list, n1) + list[n  1];

 return 0;
}

/* count ++ */

/* count ++ */
/* count ++ */

Trsum (n) = 2n + 2

But it takes more time to
compute each step.

§1 What to Analyze

5/15

§1 What to Analyze

 Is it really necessary
to count the exact
number of steps ?

Uhhh ...
 I don’t think so.Why not?

Because
 it drives me crazy!

 So it’s too complicated sometimes.
But does it worth the effort?

Take the iterative and
recursive programs for summing

a list for example --- if you think 2n+2 is
less than 2n+3, try a large n and

you’ll be surprised !

 I see ...
Then what’s the point of

this Tp stuff?

Good question !
Let’s ask the students ...

6/15

§2 Asymptotic Notation (, , , o)

The point of counting the steps is to predict the
growth in run time as the N change, and thereby
compare the time complexities of two programs.
So what we really want to know is the asymptotic
behavior of Tp.

Suppose Tp1 (N) = c1N2 + c2N and Tp2 (N) = c3N.
Which one is faster?

No matter what c1, c2, and c3 are, there will be an n0
such that Tp1 (N) > Tp2 (N) for all N > n0.

I see! So as long as I know that
Tp1 is about N2 and Tp2 is about N, then for

sufficiently large N, P2 will be faster!

7/15

§2 Asymptotic Notation

【 Definition 】 T (N) = O(f (N)) if there are positive constants c
and n0 such that T (N)  c  f (N) for all N  n0.

【 Definition 】 T (N) = (g(N)) if there are positive constants c
and n0 such that T (N)  c  g(N) for all N  n0.

【 Definition 】 T (N) = (h(N)) if and only if T (N) = O(h(N))
and T (N) = (h(N)) .

Note:
 2N + 3 = O(N) = O(Nk1) = O(2N) =  We shall always take the

smallest f (N).

 2N + N2 = (2N) = (N2) = (N) = (1) =  We shall always
take the largest g(N).

【 Definition 】 T (N) = o(p(N)) if T (N) = O(p(N)) and T (N) 
(p(N)) .

8/15

§2 Asymptotic Notation

Rules of Asymptotic Notation

 If T1 (N) = O(f (N)) and T2 (N) = O(g(N)), then
(a) T1 (N) + T2 (N) = max(O(f (N)), O(g(N))),
(b) T1 (N) * T2 (N) = O(f (N) * g(N)).

 If T (N) is a polynomial of degree k, then T (N) = (N k).

 logk N = O(N) for any constant k. This tells us that
logarithms grow very slowly.

Note: When compare the complexities of two programs
asymptotically, make sure that N is sufficiently large.

 For example, suppose that Tp1 (N) = 106N and Tp2 (N) = N2.
Although it seems that (N2) grows faster than (N), but if N
< 106, P2 is still faster than P1.

Note: When compare the complexities of two programs
asymptotically, make sure that N is sufficiently large.

 For example, suppose that Tp1 (N) = 106N and Tp2 (N) = N2.
Although it seems that (N2) grows faster than (N), but if N
< 106, P2 is still faster than P1.

9/15

§2 Asymptotic Notation

Input size n
Time Name 1 2 4 8 16 32

1
log n

n
n log n

n2
n3

constant
logarithmic

linear
log linear
quadratic

cubic

 1 1 1 1 1 1
 0 1 2 3 4 5
 1 2 4 8 16 32
 0 2 8 24 64 160
 1 4 16 64 256 1024
 1 8 64 512 4096 32768

2n
n !

exponential
factorial

 2 4 16 256 65536 4294967296
 1 2 24 40326 2092278988000 26313  1033

10/15

 0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

§2 Asymptotic Notation

2n

n2

n log n

n

Log n

f

n
11/15

§2 Asymptotic Notation

Time for f (n) instructions on a 109 instr/sec computer
n f(n)=n log2n n2 n3 n4 n10 2n

10

20

30

40

50

100

1,000

10,000

100,000

1,000,000

.01s

.02s

.03s

.04s

.05s

.10s

1.00s

10s

100s

1.0ms

.03s

.09s

.15s

.21s

.28s

.66s

9.96s

130.03s

1.66ms

19.92ms

.1s

.4s

.9s

1.6s

2.5s

10s

1ms

100ms

10sec

16.67min

1s

8s

27s

64s

125s

1ms

1sec

16.67min

11.57d

31.71yr

10s

160s

810s

2.56ms

6.25ms

100ms

16.67min

115.7d

3171yr

3.17107yr

10sec

2.84hr

6.83d

121.36d

3.1yr

3171yr

3.171013yr

3.171023yr

3.171033yr

3.171043yr

1s

1ms

1sec

18.3min

13d

41013yr

3210283yr

s = microsecond = 10-6 seconds
ms = millisecond = 10-3 seconds
sec = seconds

min = minutes yr = years
hr = hours
d = days

n

12/15

〖 Example 〗 Matrix addition

void add (int a[][MAX_SIZE],
 int b[][MAX_SIZE],
 int c[][MAX_SIZE],
 int rows, int cols)
{

 int i, j ;

 for (i = 0; i < rows; i++)

 for (j = 0; j < cols; j++)

 c[i][j] = a[i][j] + b[i][j];

}

/*  (rows) */

/*  (rows  cols) */

/*  (rows  cols) */

T(rows, cols) =  (rows  cols)

§2 Asymptotic Notation

13/15

§2 Asymptotic Notation

 General Rules

 FOR LOOPS: The running time of a for loop is at most the
running time of the statements inside the for loop (including
tests) times the number of iterations.

 NESTED FOR LOOPS: The total running time of a statement
inside a group of nested loops is the running time of the
statements multiplied by the product of the sizes of all the for
loops.

 CONSECUTIVE STATEMENTS: These just add (which means
that the maximum is the one that counts).

 IF / ELSE: For the fragment
if (Condition) S1;
else S2;

the running time is never more than the running time of the
test plus the larger of the running time of S1 and S2.

14/15

§2 Asymptotic Notation

 RECURSIONS:

〖 Example 〗 Fibonacci number:
Fib(0) = Fib(1) = 1, Fib(n) = Fib(n1) + Fib(n2)

long int Fib (int N)
{

if (N <= 1)

 return 1;

else

 return Fib(N  1) + Fib(N  2);

}

/* O(1) */

/* O(1) */

/*O(1)*/

/* T (N) */

/*T(N 1)*/ /*T(N 2)*/

T(N) = T(N 1) + T(N 2) + 2  Fib(N)

Proof by
induction

NN

N 

















3

5
)(Fib

2

3
T(N) grows exponentially

Q: Why is it
so bad?

15/15

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

