
CHAPTER 3

Lists, Stacks, and Queues

§1 Abstract Data Type (ADT)

【 Definition】 Data Type = { Objects }  { Operations }

〖 Example 〗 int = { 0, 1, 2,   , INT_MAX, INT_MIN
}
  { , , , , ,    }【 Definition】 An Abstract Data Type (ADT) is a data

type that is organized in such a way that the
specification on the objects and specification of the
operations on the objects are separated from the
representation of the objects and the implementation
on the operations.

1/14

§2 The List ADT

Objects: (item0, item1,  , itemN1)

Operations:
 Finding the length, N, of a list.

 Printing all the items in a list.

 Making an empty list.

 Finding the k-th item from a list, 0  k < N.

 Inserting a new item after the k-th item of a list, 0  k < N.

 Deleting an item from a list.

 Finding next of the current item from a list.

 Finding previous of the current item from a list.

 ADT:

Why after?

2/14

1. Simple Array implementation of Lists §2 The List ADT

array[i] = itemi

 MaxSize has to be estimated.

Address Content

array+i itemi

array+i+1 itemi+1

…… ……

…… ……

Sequential mapping

 Find_Kth takes O(1) time.

 Insertion and Deletion not only

take O(N) time, but also involve a
lot of data movements which takes
time.

3/14

§2 The List ADT2. Linked Lists

Address Data Pointer

0010
0011
0110
1011

SUN
QIAN
ZHAO

LI

1011
0010
0011

NULL

Head pointer ptr = 0110

ZHAO QIAN

SUN LI

ptr

NULL

Initialization:

typedef struct list_node *list_ptr;
typedef struct list_node {
 char data [4] ;
 list_ptr next ;
} ;
list_ptr ptr ;

To link ‘ZHAO’ and ‘QIAN’:

list_ptr N1, N2 ;
N1 = (list_ptr)malloc(sizeof(struct list_node));
N2 = (list_ptr)malloc(sizeof(struct list_node));
N1->data = ‘ZHAO’ ;
N2->data = ‘QIAN’ ;
N1->next = N2 ;
N2->next = NULL ;
ptr = N1 ;

ZHAO QIAN

ptr

NULL

Locations of the nodes may
change on different runs.

4/14

§2 The List ADT

a1

ptr

NULLai ai+1 an... ...

InsertionInsertion
node

b

temp

 temp->next =
 node->next

 node->next = temp

Question: What will happen
if the order of the two steps is reversed?

Question: How can we insert a new first item?

 takes O(1) time.

5/14

§2 The List ADT

DeletionDeletion

a1

ptr

NULLai ai+1 an... ...

b

pre

node

 pre->next =
 node->next

 free (node)b

node
Question: How can we

delete the first node from a list?

Answer: We can add a dummy
head node to a list.

 takes O(1) time.

Read programs in Figures 3.6-3.15
for detailed implementations of operations.

6/14

§2 The List ADT
Doubly Linked Circular Lists

 Don’t we have
 enough headache already?

Why do we need
 the doubly linked lists?

 Suppose you have a list
 1->2->3->…->m.
Now how would you
get the m-th node?

 I’ll go from the 1st node
to the m-th node.

 Then you are asked to find
 its previous node m  1?

 Uhhh ... Then I’ll have to
 go from the 1st node again.

But hey, why do I wantta
 find the previous node?

 Why do you ask me? :-)
Maybe you wantta delete

the m-th node?

typedef struct node *node_ptr ;
typedef struct node {
 node_ptr llink;
 element item;
 node_ptr rlink;
} ;

item 
llink rlink

ptr = ptr->llink->rlink

 = ptr->rlink->llink

A doubly linked circular list with head node:

item1  item2  item3 H

An empty list : H

7/14

§2 The List ADT
Two Applications

 The Polynomial ADT

Objects : P (x) = a1 x e1 +  + an x en ; a set of ordered
pairs of < ei , ai > where ai is the coefficient and
ei is the exponent. ei are nonnegative integers.

Operations:

 Finding degree, max { ei }, of a polynomial.

 Addition of two polynomials.

 Subtraction between two polynomials.

 Multiplication of two polynomials.

 Differentiation of a polynomial.

8/14

§2 The List ADT【 Representation 1】
 typedef struct {

int CoeffArray [MaxDegree + 1] ;
int HighPower;

 } *Polynomial ;

I like it! It’s easy to
implement most of the operations,

such as Add and Multiplication.

 Really? What is the time complexity
 for finding the product of two polynomials

of degree N1 and N2?

O(N1*N2)
What’s wrong with that?

Try to apply MultPolynomial (p.47)
On P1(x) = 10x1000+5x14+1 and

P2(x) = 3x19902x1492+11x+5
-- now do you see my point?

9/14

§2 The List ADT

Given
:

01

01)(ee
m xaxaxA m  

 

.1,,1,0for 0 and 0 where 021   miaeee imm 

We represent each term as a node ExponentCoefficient Next 

Declaration:

typedef struct poly_node *poly_ptr;
struct poly_node {
 int Coefficient ; /* assume coefficients are integers */
 int Exponent;
 poly_ptr Next ;
} ;
typedef poly_ptr a ; /* nodes sorted by exponent */

am1 em1  a0 e0 NULL……a

【 Representation 2】

10/14

§2 The List ADT
 Multilists

〖 Example 〗 Suppose that we have 40,000 students and
2,500 courses. Print the students’ name list for each course,
and print the registered classes’ list for each student.

【 Representation 1】
int Array[40000][2500];








otherwise0

 coursefor registered is student if1
]][[Array

ji
ji

11/14

§2 The List ADT【 Representation 2】
S1 S2 S3 S4 S5

C1

C2

C3

C4

Home work:
Self-study the sparse matrix

representation

12/14

§2 The List ADT

3. Cursor Implementation of Linked Lists (no pointer)

 Features that a linked list must have:

a) The data are stored in a collection of structures. Each
structure contains data and a pointer to the next structure.

b) A new structure can be obtained from the system’s global
memory by a call to malloc and released by a call to free.

Cursor
Space

Element
Next

0 1 2 S-1… …

1 2 3 S-1 0

Note: The interface for the cursor implementation (given in
Figure 3.27 on p. 52) is identical to the pointer
implementation (given in Figure 3.6 on p. 40).

Note: The interface for the cursor implementation (given in
Figure 3.27 on p. 52) is identical to the pointer
implementation (given in Figure 3.6 on p. 40).

13/14

§2 The List ADT

Element
Next 2 5 S-2 0

0 1 2 S-1… …

malloc:

p

p = CursorSpace[0].Next ;

CursorSpace[0].Next = CursorSpace[p].Next ;

x

Element
Next 2 5 S-2 0

0 1 2 S-1… …

p

free(p):

2

CursorSpace[p].Next = CursorSpace[0].Next ;

p

CursorSpace[0].Next = p ;

Note: The cursor implementation
is usually significantly faster
because of the lack of memory
management routines.

Note: The cursor implementation
is usually significantly faster
because of the lack of memory
management routines.

Read operation
implementations given in

Figures 3.31-3.35

14/14

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

