CHAPTER 3
Lists, Stacks, and Queues

§1 Abstract Data Type (ADT)

[Definition] Data Type = { Objects } U { Operations }
(Example) int={0,*1, +2, - - -, INT_MAX, INT_MIN

}
U{+!'1 X, +1%! e }

[Definition] An Abstract Data Type (ADT) is a data
type that is organized in such a way that the
specification on the objects and specification of the
operations on the objects are separated from the
representation of the objects and the implementation
on the operations.

1/14

§2 The List ADT
% ADT:
Objects: (item,g, item, -- - ,item,)

Operations:
IﬂFinding the length, N, of a list.

 Printing all the items in a list.

1 Making an empty list.
I ﬁ\ding the k-th item from aJist, 0 < k < N.

1 *éerting a new item after the k-th item of a list, 0 < k < NN.
i *Ieting an item from a list.

] Finding next of the current item from a list.

J Finding previous of the current item from a list.

2/14

3/14

1. Simple Array implementation of Lists

array| i] = item,

@ntial ma@

Address | Content
array-+i item,
array+i+1| item,

ﬂlaxSize has to be estimated.

I] Find_Kth takes O(1) time.

I] Insertion and Deletion not only

take O(NN) time, but also involve a
lot of data movements which takes

time.

§2 The List ADT

e

§2 The List ADT

2. Linked Lists ptr
Address | Data | Pointer L ZHAQO |[®—| QIAN ‘)
0010 SUN 1011 Cr
0011 QIAN 0010 SUN |® L1 [®— NULL
0110 | ZHAO | 0011
1011 LI NULL To link ‘ZHAQO’ and ‘QIAN’:

Head pointer ptr =

0

Initialization:

typedef struct list_node
typedef struct list node {
data[4];

char
list_ptr
}s
list_ptr ptr;

next ;

zeof(struct list_node));
Locations of the nodes may {'(stuct list_node));
change on different runs.

7

| QIAN NULL

4/14

5/14

§2 The List ADT

Insertion I] takes O(1) time.
hode
ptr l
a, |e a (e d., |e a |e NULL
.

® temp->next = b e @ node->next = temp

node->next

temp

Question: What will happen
if the order of the two steps is reversed?

Question: How can we insert a new first item?

§2 The List ADT

Deletion I] :
takes O(1) time.
pre
ptr l
L Cll [coe ai 'L ai+1 ® coe an &— NULL
_ \
@ pre->next = @ free (node)

node->next /7

Question: How can we
delete the first node from a list?

Answer: We can add a dummy
head node to a list.

Read programs in Figures 3.6-3.15
for detailed implementations of operations.

6/14

-Doublj; Linked Circular Lists '

typedef struct node *node_ptr ;
typedef struct node {
node_ptr llink;
element item;
node_ptr rlink;

WHhy do you ask me? :-)
A doubly linked cirq\layﬂi;symiﬂvzhfad dekdee

§2 The List ADT

llink

item

.. Then I’ll have to

-lq?

item1

item?2

A

\/

1€.

-tlfnode’
T — 1? \

rlink

n the 1R thodU g >riink
}; V> why do Ewéanttlink->llink

JQode

item3 ’

\J

An empty list : H— f.\;

7/14

§2 The List ADT

Two Applications

#* The Polynomial ADT

Objects: P(x)=a,x' + --- +a_ x°; aset of ordered
pairs of < e., a.> where a, is the coefficient and
e, is the exponent. e, are nonnegative integers.
Operations:

1 Finding degree, max { e, }, of a polynomial.
]l Addition of two polynomials.
1 Subtraction between two polynomials.

1 Multiplication of two polynomials.

U Differentiation of a polynomial.

8/14

[Representation 1] §2 The List ADT

typedef struct {
int CoeffArray [MaxDegree + 1] ;
int HighPower;

} *Polynomial ;

Try to apply MultPolynomial (p.47)
On P,(x) = 10x1°%9+5x14+1 and

P,(x) = 3x1990-2x1492+11x+5

-- now do you see my point?

9/14

[Representation 2] §2 The List ADT

Given A(X) =am_1xem'1 + ... +C10Xe°
where e, , >e_,>--->e, 20 and a;, #0 for i =0,1,---,m- 1.

We represent each term as a node |Coefficient| Exponent | next ®

Declaration:

typedef struct poly_node *poly_ ptr;
struct poly_node {
int Coefficient ; * assume coefficients are integers */
int Exponent;
poly ptr Next;
}s
typedef poly ptr a; /*nodes sorted by exponent */

[

a—1d

e @—}— cccoce a() eo NULL

10/14

. §2 The List ADT
* Multilists

K Example] Suppose that we have 40,000 students and
2,500 courses. Print the students’ name list for each course,
and print the registered classes’ list for each student.

[Representation 1]
int Array[40000][2500];

1 if student i is registered for course j
Arrayli][j] =
0 otherwise

7 x
/

e

11/14

12/14

[Representation 2]

S1

S2

S3

Home work:
Self-study the sparse matrix]

S4

representation

§2 The List ADT

S5

§2 The List ADT
3. Cursor Implementation of Linked Lists (no pointer)

“|Features that a linked list must have:

a) The data are stored in a collection of structures. Each
structure contains data and a pointer to the next structure.

b) A new structure can be obtained from the system’s global
memory by a call to malloc and released by a call to free.

0 1 2 ... S-1
Cursor Ejlement H

1 2 3 S-1| 0
I)

Note: The interface for the cursor implementation (given in
Figure 3.27 on p. 52) is identical to the pointer
implementation (given in Figure 3.6 on p. 40).

13/14

14/14

§2 The List ADT

0 1 2 e S-1
Element H
Next LX 5 S-2 0
p

malloc: p = CursorSpace[0].Next ;
CursorSpace[0].Next = CursorSpace[p].Next ;

0 1 zm S-1

Element H / \
Next LD 5 S-2 2 0
g. 1 j

p

free(p): CursorSpace[p].Next = CursorSpace[0].Next ;
CursorSpace[0].Next=p ;

Q)
Note: The cursor implementation

is usually significantly faster
because of the lack of memory
management routines.

Read operation
implementations given in
Figures 3.31-3.35

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

