
§3 The Stack ADT
1. ADT

1
2
3
4
5
6

65

6
5

 A stack is a Last-In-First-Out (LIFO) list,
that is, an ordered list in which insertions and
deletions are made at the top only.

Objects: A finite ordered list with zero
or more elements.

Operations:

 Int IsEmpty(Stack S);
 Stack CreateStack();
 DisposeStack(Stack S);
 MakeEmpty(Stack S);
 Push(ElementType X, Stack S);
 ElementType Top(Stack S);
 Pop(Stack S);

Note: A Pop (or Top) on
an empty stack is an error
in the stack ADT.
 Push on a full stack is
an implementation error
but not an ADT error.

Note: A Pop (or Top) on
an empty stack is an error
in the stack ADT.
 Push on a full stack is
an implementation error
but not an ADT error.

1/12

§3 The Stack ADT2. Implementations

 Linked List Implementation (with a header node)

NULL
Element


Element


Element

 Push:  TmpCell->Next = S->Next

 S->Next = TmpCell

 Top:

 FirstCell = S->Next

 S->Next = S->Next->Next

 free (FirstCell)

return S->Next->Element

 S


Element TmpCell

 S

 Pop:

Element

FirstCell

 S

 But, the calls to
 malloc and free

are expensive.

 Easy! Simply keep
another stack as

a recycle bin.

2/12

§3 The Stack ADT
 Array Implementation

struct StackRecord {
int Capacity ; /* size of stack */
int TopOfStack; /* the top pointer */
/* ++ for push, -- for pop, -1 for empty stack */
ElementType *Array; /* array for stack elements */

 } ;

Note:  The stack model must be well encapsulated. That
is, no part of your code, except for the stack routines,
can attempt to access the Array or TopOfStack
variable.

  Error check must be done before Push or Pop
(Top).

Note:  The stack model must be well encapsulated. That
is, no part of your code, except for the stack routines,
can attempt to access the Array or TopOfStack
variable.

  Error check must be done before Push or Pop
(Top).

Read Figures 3.38-3.52 for detailed implementations of
stack operations.

3/12

§3 The Stack ADT3. Applications

 Balancing Symbols

Check if parenthesis (), brackets [], and braces { } are balanced.

Algorithm {
 Make an empty stack S;
 while (read in a character c) {
 if (c is an opening symbol)
 Push(c, S);
 else if (c is a closing symbol) {
 if (S is empty) { ERROR; exit; }
 else { /* stack is okay */
 if (Top(S) doesn’t match c) { ERROR, exit; }
 else Pop(S);
 } /* end else-stack is okay */
 } /* end else-if-closing symbol */
 } /* end while-loop */
 if (S is not empty) ERROR;
}

T(N) = O (N)
where N is the length

of the expression.
This is an

on-line algorithm.

4/12

§3 The Stack ADT
 Postfix Evaluation

〖 Example〗 An infix expression: a  b  c  d  e
 A prefix expression:   a  b c  d e
 A postfix expression: a b c   d e  

operand operatoroperator with
the highest
precedence〖 Example 〗 6 2  3  4 2   = ?8

top

Get token: 6 (operand)

top6

Get token: 2 (operand)

top2

Get token:  (operator)

26 = 3top

top

3 top

Get token: 3 (operand)

3 top
Get token:  (operator)

3
top

top
3  = 00 top

Get token: 4 (operand)

top4 Get token: 2 (operand)

top2

Get token:  (operator)top

2

top

4  = 8

8 top

Get token:  (operator)top

8top 0  = 8

8 top Pop: 8

top

Reverse Polish notation

T(N) = O (N). No need to know precedence rules.

5/12

§3 The Stack ADT
 Infix to Postfix Conversion

〖 Example 〗 a  b  c  d = ? a b c   d 

Note:
 The order of operands is the same in infix and postfix.
 Operators with higher precedence appear before those

with lower precedence.

Output:

top

Get token: a (operand)

a

 Get token:  (plus)

 top

Get token: b (operand)

b

 Get token:  (times)

   ?top
Get token: c (operand)

c

 Get token:  (minus)

   ?top



   ?

top



top
Get token: d (operand)

d

top



Isn’t that
simple?

 Wait till
you see the next

example...

6/12

§3 The Stack ADT

(  ?

〖 Example 〗 a  (b  c)  d = ? a b c   d 

top

Output:

 Get token: a (operand)

a

 Get token:  (times)

 top

 Get token: ((lparen)

  (?top(

 Get token: b (operand)

b

 Get token:  (plus)

NO?!

top+
 Get token: c (operand)

c

 Get token:) (rparen)
top



top

 Get token:  (divide)

   ?
top



top Get token: d (operand)

d

top



T(N) = O (N)

7/12

§3 The Stack ADTSolutions:

 Never pop a (from the stack except when processing a) .

 Observe that when (is not in the stack, its precedence is
the highest; but when it is in the stack, its precedence is
the lowest. Define in-stack precedence and incoming
precedence for symbols, and each time use the
corresponding precedence for comparison.

Note: a – b – c will be converted to a b – c –. However,

2^2^3 () must be converted to 2 2 3 ^ ^, not

2 2 ^ 3 ^ since exponentiation associates right to

left.

Note: a – b – c will be converted to a b – c –. However,

2^2^3 () must be converted to 2 2 3 ^ ^, not

2 2 ^ 3 ^ since exponentiation associates right to

left.

322

8/12

§3 The Stack ADT
 Function Calls -- System Stack

Return Address
Stack Frame s p

Local Variables

Return Address
s p
s p

Old Frame Pointer s p

f p

f p

s pf p

void PrintList (List L)
{
 if (L != NULL) {
 PrintElement (L->Element);
 PrintList(L->next);
 }
} /* a bad use of recursion */

 What’s wrong
with it?

 What will happen
 if L contains 1 million

elements?

 Well, if 1 million elements
are not enough to crash

your program,
try a larger one.

tail recursion

void PrintList (List L)
{
top: if (L != NULL) {
 PrintElement (L->Element);
 L = L->next;
 goto top; /* do NOT do this */
 }
} /* compiler removes recursion */

Recursion can always be completely removed.
Non recursive programs are generally faster than

equivalent recursive programs.
However, recursive programs are in general

much simpler and easier to understand.

9/12

§4 The Queue ADT
1. ADT

A queue is a First-In-First-Out (FIFO) list, that is, an
ordered list in which insertions take place at one
end and deletions take place at the opposite end.

2

3

4

1

1

1

2

2

Objects: A finite ordered list with zero
or more elements.

Operations:

 int IsEmpty(Queue Q);
 Queue CreateQueue();
 DisposeQueue(Queue Q);
 MakeEmpty(Queue Q);
 Enqueue(ElementType X, Queue Q);
 ElementType Front(Queue Q);
 Dequeue(Queue Q);

10/12

Job 3

2. Array Implementation of Queues
 (Linked list implementation is trivial)

struct QueueRecord {
int Capacity ; /* max size of queue */
int Front; /* the front pointer */
int Rear; /* the rear pointer */
int Size; /* Optional - the current size of queue */
ElementType *Array; /* array for queue elements */

 } ;

〖 Example〗 Job Scheduling in an Operating System

Rear Front

Enqueue Job 1 Enqueue Job 2 Enqueue Job 3 Dequeue Job 1

Enqueue Job 4 Enqueue Job 5 Enqueue Job 6 Dequeue Job 2

Enqueue Job 7 Enqueue Job 8

Job 1 Job 2

Rear Rear RearFront Rear

Job 4

Rear

Job 5

Rear

Job 6

Front Rear

Job 7

0 1 2 3 4 5 6

§4 The Queue ADT

11/12

§4 The Queue ADT

Are you kidding?
Of course I do!

Do you have
a better idea?

[0]

[1]

[2][3]

[4]

[5]
Enqueue Job 1

Enqueue Job 2

Enqueue Job 3

Dequeue Job 1

Enqueue Job 4

Enqueue Job 5

Enqueue Job 6

Enqueue Job 7

Job
1

Job
2

Job
3

Job
4

Job
5

Job
6

The queue
is full

Question:
Why is the queue

announced full
while there is

still a free
space left?

Circular Queue:Circular Queue:

Rear

Front

Rear

Rear

Front

Rear

Front

Rear

Rear
Rear

Note: Adding a Size field can avoid wasting one empty space
to distinguish “full” from “empty”. Do you have any
other ideas?

12/12

Bonus
Problem 1

 One Way In, Two Ways
Out

(2 points)

Due: Tuesday, January 4th, 2022 at 10:00pm

The problem can be found and submitted at
 https://pintia.cn/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

