1/12

83 The Stack ADT

1. ADT

A stack is a Last-In-First-Out (LIFO) list,
that is, an ordered list in which insertions and
deletions are made at the top only.

Objects: A finite ordered list with zero
or more elements.

Operations:

int IsEmpty(Stack S);

] Stack CreateStack():; | |

] DisposeStack(Stack S); e ol ((l)(r.TOP) &
o Sack)
| Push(ElementType X, Stack S); Push on a full stack is
- ElementType 'ﬁ)p(Stack S); an implementation error

| Pop(Stack S); but not an ADT error.

2/12

2. Implementations §3 The Stack ADT

> Linked List Implementation (with a header node)

Wpush: @ TmpCell->Next = S->Next 1 1
® S->Next = TmpCell , - >{Element

| |

I'ﬂ'l'OIO: return S->Next->Element I [

[l Pop: @ FirstCell = S->Next
@ S->Next = S->Next->Next

EIerﬁent -

® | ® |—S
® free (FirstCell) i i
; Element}
Easy! Simply keep ®
another stack as
1Element|

a recycle bin.

e

I k ADT
> Array Implementation §3 The Stac

struct StackRecord {
int Capacity ; I* size of stack */
int TopOfStack; I* the top pointer */
I* ++ for push, -- for pop, -1 for empty stack */
ElementType *Array; [* array for stack elements */

};

Note: @ The stack model must be well encapsulated. That
is, no part of your code, except for the stack routines,
can attempt to access the Array or TopOfStack
variable.

@ Error check must be done before Push or Pop

Read Figures 3.38-3.52 for detailed implementations of
stack operations.

3/12

3. Applications §3 The Stack ADT

* Balancing Symbols
Check if parenthesis (), brackets [], and braces { } are balanced.

Algorithm {
Make an empty stack S;
while (read in a character c) {
if (c is an opening symbol)
Push(c, S);
else if (c is a closing symbol) {
if (S is empty) { ERROR; exit; }
else { I* stack is okay */
if (Top(S) doesn’t match c) { ERROR, exit; }
else Pop(S);
} I* end else-stack is okay */
} I* end else-if-closing symbol */
} I* end while-loop */
if (S is not empty) ERROR;

T(N)=0O(N)
where N is the length
of the expression.
This is an
on-line algorithm.

4/12

. . 83 The Stack ADT
* Postfix Evaluation

(Example) Aninfix expression: a+bx*c-d/e
A prefix expression: -+axbc/de

A postfix expression: abcx+de/
. : operator with¥
Eleverse Polish notation operand the highest operator

K Example] 62/3-42%x+ 87? precedence

Get token: 6 (operand) Get token: 2 (operand)

: Get token: / (operator) Get token: 3 (operand)

‘— top Get token: - (operator) Get token: 4 (operand)
=]: tep Get token: 2 (operand) Get token: x (operator)
i_ ___ = EBB Get token: + (operator) Pop: 8

= (8B

T(N)=0(N). No need to know precedence rules.

5/12

. . . 83 The Stack ADT
* Infix to Postfix Conversion

(Example) a+bxc-dabckx+d-

Note:
» The order of operands is the same in infix and postfix.
» = higher precedence appear before those
Isn’t that lence.
simple? A A
— Wait till
you see the next

Get example... _.i: + (plus)

et toke.. A G oken: k (times)

wet token: c (operand) | Get toker Qinus)

Get token: d (operand)

6/12

83 The Stack ADT

(Example) ax(b+c)/cabc+xd/

rOutput:abc+*d/ ﬂ

Get token: a (operand) | Get token: x (times)

Get token: ((Iparen) Get token: b (operand)
Get token=+{plus) Get token: ¢ (operand)
' ') Get token: / (divide)
i E Get token: (operand)

—

7/12

Solutions: 83 The Stack ADT

@ Never pop a (from the stack except when processing a) .

@ Observe that when (is not in the stack, its precedence is
the highest; but when it is in the stack, its precedence is
the lowest. Define in-stack precedence and incoming
precedence for symbols, and each time use the
corresponding precedence for comparison.

Note: a ! b —c will be converted. toab-c —.' However, |
3
2A2A3 (2%) must be converted to 2 2 3 A A, not

2 2 A 3 A since exponentiation associates right to
left.

8/12

9/12

’ §3 The Stack ADT
* Function Calls -- System Stack e Stac

E A
Recursion can always be completely removed.

Non recursive programs are generally faster than nents
| equivalent recursive programes. | L

However, recursive programs are in general
much simpler and easier to understand.

fo

4l.leo
void PrintL ListL) void PrintList (ListL)
{ {
if(L!=N{ /L) { top: if (L!=NULL) {
PrintEl¢ ment (L->Element); PrintElement (L->Element);
PrintList(L->next); L = L->next;
} goto top; /* do NOT do this */
} I* a bad use of recursion */ }
} I* compiler removes recursion */

§4 The Queue ADT
1. ADT

A queue is a First-In-First-Out (FIFO) list, that is, an
ordered list in which insertions take place at one
end and deletions take place at the opposite end.

Objects: A finite ordered list with zero
or more elements.

Operations:

int IsEmpty(Queue Q);
Queue CreateQueue();
DisposeQueue(Queue Q);
keEmpty(Queue Q);
nqueue(ElementType X, Queue Q);
ElementType Front(Queue Q);
| Dequeue(Queue Q);

10/12

11/12

2. Array Implementation of Queues

(Linked list implementation is trivial)
struct QueueRecord {

int Capacity ;
int Front;
int Rear;

I* max size of queue */
I* the front pointer */
I* the rear pointer */

84 The Queue ADT

int Size; /* Optional - the current size of queue */
ElementType *Array;

b
(Example)
0

I* array for queue elements */

Job Scheduling in an Operating System

3

4

5 6

o

I

e e ——— = =

|J3b3 Job4_Job5 Job 6] Job 7

o =

——I—-_-_

‘ Front

()

Enqueue Job 1

Enqueue Job 2

Enqueue Job 3

Dequeue Job 1

Enqueue Job 4

Enqueue Job 5

Enqueue Job 6

Dequeue Job 2

Enqueue Job 7

Enqueue Job 8

84 The Queue ADT
Circular Queue:

E |

Y
"~ Question:

Why is the queue

announced full
while there is

still a free

| space left?

A

e Y |

Note: Adding a Size field can avoid wasting one empty space
to distinguish “full” from “empty”. Do you have any
other ideas?

12/12

+leA
vwO1O@%0O co

One Way In, Two Ways
Due: Tuesday, Januarfit 2022 at 10:00pm

(2 points)
The problem can be found and submitted at

https://pintia.cn/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

