CHAPTER 4 ## **TREES** # §1 Preliminaries # 1. Terminology **Lineal Tree** Pedigree Tree (binary tree) - [Definition] A tree is a collection of nodes. The collection can be empty; otherwise, a tree consists of - (1) a distinguished node *r*, called the root; - (2) and zero or more nonempty (sub)trees T_1, \dots, T_k , each of whose roots are connected by a directed edge from r. #### Note: - > Subtrees must not connect together. Therefore every node in the tree is the root of some subtree. - \triangleright There are N-1 edges in a tree with N nodes. - > Normally the root is drawn at the top. #### §1 Preliminaries - degree of a node ::= number of subtrees of the node. For example, degree(A) = 3, degree(F) = 0. - degree of a tree $:= \max_{\text{node} \in \text{tree}} \{ \text{degree}(\text{node}) \}$ For example, degree of this tree = 3. - parent ::= a node that has subtrees. - children ::= the roots of the subtrees of a parent. - **>** siblings ::= children of the same parent. - **► leaf (terminal node)** ::= a node with degree 0 (no children). #### §1 Preliminaries **(F)** - > path from n_1 to n_k ::= a (unique) sequence of nodes $n_1, n_2, ..., n_k$ such that n_i is the parent of n_{i+1} for $1 \le i < k$. - length of path ::= number of edges on the path. - **depth of** $n_i ::=$ length of the unique path from the root to n_i . Depth(root) = 0. - height of $n_i ::=$ length of the longest path from n_i to a leaf. Height(leaf) = 0, and height(D) = 2. - height (depth) of a tree ::= height(root) = depth(deepest leaf). - ancestors of a node ::= all the nodes along the path from the node up to the root. - descendants of a node ::= all the nodes in its subtrees. # 2. Implementation ## **A** List Representation (A(B,C,D) (A(B) So the size of each node depends on the number of branches. Hmmm... That's not good. ## **FirstChild-NextSibling Representation** Note: The representation is not unique since the children in a tree can be of any order. # §2 Binary Trees [Definition] A binary tree is a tree in which no node can have more than two children. Rotate the FirstChild-NextSibling tree clockwise by 45°. **Expression Trees (syntax trees)** **Example Given an infix expression:** dConstructing an ExpRession Thee (from postfix expression) [Example] $$(a+b)*(c*(d+e))=ab+cde+**$$ ## dTree Traversals — visit each node exactly once ## **Preorder** Traversal ``` void preorder (tree_ptr tree) { if (tree) { visit (tree); for (each child C of tree) preorder (C); } } ``` ## **Postorder Traversal** ``` void postorder (tree_ptr tree) { if (tree) { for (each child C of tree) postorder (C); visit (tree); } } ``` #### Levelorder Traversal ``` void levelorder (tree_ptr tree) { enqueue (tree); while (queue is not empty) { visit (T = dequeue ()); for (each child C of T) enqueue (C); } } ``` ## Inorder Traversal ``` void inorder (tree_ptr tree) { if (tree) { inorder (tree->Left); visit (tree->Element); inorder (tree->Right); } } ``` # [Example] Given an infix expression: ``` A + B * C / D ``` ``` Then inorder traversal \Rightarrow A + B * C / D postorder traversal \Rightarrow A B C * D / + preorder traversal \Rightarrow +A / * B C D ``` **Example** Directory listing in a hierarchical file system. Listing format: files that are of depth d_i will have their names indented by d_i tabs. ``` /usr mark book Ch_{1.c} Ch2.c Ch3.c course cop3530 fall96 syl.r spr97 syl.r sum97 syl.r hw.c alex hw.c bill work course cop3212 fall96 grades p1.r p2.r fall97 p2.r p1.r grades ``` ``` static void ListDir (DirOrFile D, int Depth) { if (D is a legitimate entry) { PrintName (D, Depth); if (D is a directory) for (each child C of D) ListDir (C, Depth + 1); } } ``` ``` Note: Depth is an internal variable and must not be seen by the user of this routine. One solution is to define another interface function as the following: void ListDirectory (DirOrFile D) ListDir(D, 0); } ``` # [Example] Calculating the size of a directory. ``` static int SizeDir (DirOrFile D) { int TotalSize; TotalSize = 0; if (D is a directory) for (each child C of D) TotalSize += SizeDir(C); } /* end if D is legal */ return TotalSize; } T(N) = O(N) ``` # ***** Threaded Binary Trees Because I enjoy giving vidding. They are A. J. Perlis and C. Thornton. I wish 1 reany done it Horp comes Then who should take the credit? - Rule 1: If Tree->Left is null, replace it with a pointer to the inorder predecessor of Tree. - Rule 2: If Tree->Right is null, replace it with a pointer to the inorder successor of Tree. - Rule 3: There must not be any loose threads. Therefore a threaded binary tree must have a head node of which the left child points to the first node. **Example Given the syntax tree of an expression (infix)**