
CHAPTER 4

TREES
§1 Preliminaries

1. Terminology

Lineal Tree

Pedigree Tree
(binary tree)

1/16

§1 Preliminaries【 Definition 】 A tree is a collection of nodes. The collection
can be empty; otherwise, a tree consists of

 (1) a distinguished node r, called the root;

 (2) and zero or more nonempty (sub)trees T1, , Tk, each of
whose roots are connected by a directed edge from r.

Note:

 Subtrees must not connect together. Therefore every
node in the tree is the root of some subtree.

 There are edges in a tree with N nodes.

 Normally the root is drawn at the top.

Note:

 Subtrees must not connect together. Therefore every
node in the tree is the root of some subtree.

 There are edges in a tree with N nodes.

 Normally the root is drawn at the top.

N  1

2/16

A

CB D

GFE H I J

MLK

 degree of a node ::= number of
subtrees of the node. For example,
degree(A) = 3, degree(F) = 0.

 degree of a tree ::=
 For example, degree of this tree = 3.

 )node(degreemax
treenode

 leaf (terminal node) ::= a node with degree 0 (no children).

 parent ::= a node that has subtrees.

 children ::= the roots of the subtrees of a parent.

 siblings ::= children of the same parent.

§1 Preliminaries

3/16

§1 Preliminaries

A

CB D

GFE H I J

MLK

 ancestors of a node ::= all the nodes along the path from the
node up to the root.

 descendants of a node ::= all the nodes in its subtrees.

 depth of ni ::= length of the unique path
from the root to ni. Depth(root) = 0.

 height of ni ::= length of the longest path from ni to a leaf.
Height(leaf) = 0, and height(D) = 2.

 height (depth) of a tree ::= height(root) = depth(deepest leaf).

 path from n1 to nk ::= a (unique) sequence
of nodes n1, n2, …, nk such that ni is the
parent of ni+1 for 1  i < k.

 length of path ::= number of edges on
the path.

4/16

2. Implementation

 List Representation

A

CB D

GFE H I J

MLK

(A)

(A (B, C, D))

(A (B (E, F), C (G), D (H, I, J)))

(A (B (E (K, L), F), C (G), D (H (M), I, J)))

A

B

C

D

E

F

G

H

I

J

K

L

M

So the size of each node
 depends on the number of

branches.
Hmmm... That’s not good.

§1 Preliminaries

5/16

 FirstChild-NextSibling Representation

FirstChild NextSibling

Element

A

CB D

GFE H I J

MLK

N
A

CB
N

D

E

N
K

N N
F

N N
G H

N
I

N N
J

N N
L

N N
M

Note: The representation is not unique since the
children in a tree can be of any order.

§1 Preliminaries

6/16

§2 Binary Trees

【 Definition 】 A binary tree is a tree in which no node
can have more than two children.

N
A

CB
N

D

E

N
K

N N
F

N N
G H

N
I

N N
J

N N
L

N N
M

Rotate the FirstChild-NextSibling tree clockwise by 45.

45 N
A

C

B

N
D

E

N K
N

N
F

N
N
G

H

N I

N
N
J

N
N
L

N
N
M

Left Right

Element Left

Right

7/16

§2 Binary Trees
 Expression Trees (syntax trees)

〖 Example〗 Given an infix expression:

 A + B  C  D

+

A 

 D

B C Constructing an Expression Tree
 (from postfix expression)

〖 Example〗 (a + b) * (c * (d + e)) = a b + c d e + * *

a b

T2 a T1b

+ c d ec +

T1T2

d e

+

a b c +

d e

T1

T2

*

+

a b c +

d e

T1T2 *

*

8/16

 Tree Traversals —— visit each node exactly once

§2 Binary Trees

 Preorder Traversal  Postorder Traversal

 Levelorder Traversal

void preorder (tree_ptr tree)
{ if (tree) {
 visit (tree);
 for (each child C of tree)
 preorder (C);
 }
}

void postorder (tree_ptr tree)
{ if (tree) {
 for (each child C of tree)
 postorder (C);
 visit (tree);
 }
}

void levelorder (tree_ptr tree)
{ enqueue (tree);
 while (queue is not empty) {
 visit (T = dequeue ());
 for (each child C of T)
 enqueue (C);
 }
}

2

4 5

3

6 7

1

1

1

2 3

2

4 5

3

6 7

4

5 6 7

9/16

§2 Binary Trees

void inorder (tree_ptr tree)
{ if (tree) {
 inorder (tree->Left);
 visit (tree->Element);
 inorder (tree->Right);
 }
}

 Inorder Traversal Iterative Program
void iter_inorder (tree_ptr tree)
{ Stack S = CreateStack(MAX_SIZE);
 for (; ;) {
 for (; tree; tree = tree->Left)
 Push (tree, S) ;
 tree = Top (S); Pop(S);
 if (! tree) break;
 visit (tree->Element);
 tree = tree->Right; }
}〖 Example〗 Given an

 infix expression:
 A + B  C  D

+

A 

 D

B C

Then inorder traversal  A + B  C  D

 postorder traversal  A B C  D  +

 preorder traversal  + A   B C D

10/16

〖 Example 〗 Directory listing in a hierarchical file
system.

Listing format: files that are of depth di will have their names
indented by di tabs.

/usr

mark alex bill

book course hw.c hw.c coursework

ch1.c ch2.c ch3.c cop3530

fall96 spr97 sum97

syl.r syl.r syl.r

cop3212

fall96 fall97

grades gradesp1.r p2.r p1.rp2.r

Unix directory

§2 Binary Trees

11/16

§2 Binary Trees/usr
 mark
 book

Ch1.c
Ch2.c
Ch3.c

 course
cop3530
 fall96

syl.r
 spr97

syl.r
 sum97

syl.r
 hw.c
 alex
 hw.c
 bill
 work
 course

cop3212
 fall96

grades
p1.r
p2.r

 fall97
p2.r
p1.r
grades

static void ListDir (DirOrFile D, int Depth)
{
 if (D is a legitimate entry) {
 PrintName (D, Depth);
 if (D is a directory)
 for (each child C of D)
 ListDir (C, Depth + 1);
 }
}

Note: Depth is an internal variable and
must not be seen by the user of this
routine. One solution is to define
another interface function as the
following:

void ListDirectory (DirOrFile D)

{ ListDir(D, 0); }

T (N) = O(N)

12/16

§2 Binary Trees〖 Example 〗 Calculating the size of a directory.

/usr

mark alex bill

book course hw.c hw.c coursework

ch1.c ch2.c ch3.c cop3530

fall96 spr97 sum97

syl.r syl.r syl.r

cop3212

fall96 fall97

grades gradesp1.r p2.r p1.rp2.r

Unix directory with file sizes

1

1 1 1

1 1 1 1

1 1

1 1 1 1 1

3 2 4

6 8

1 5 2 3 4 1 2 7 9

static int SizeDir (DirOrFile D)
{
 int TotalSize;
 TotalSize = 0;
 if (D is a legitimate entry) {
 TotalSize = FileSize(D);

 if (D is a directory)
 for (each child C of D)
 TotalSize += SizeDir(C);
 } /* end if D is legal */
 return TotalSize;
} T (N) = O(N)

13/16

§2 Binary Trees

 Here comes
 the typical question of mine:

 Why do we need
 threaded binary trees?

Because I enjoy giving
you headaches ... Just kidding.

Okay, think of a full
binary tree with n nodes.

How many links are there?How many of them
are NULL?

n + 1.

Can I stand that?

Of course not!
You got it!

Any clue on how to
improve the situation?

We can replace
the null links by “threads”
which will make traversals

easier.

 You are such a
genius !

Oh well,
I wish I’d have really done it

 Then who should
take the credit?

They are
A. J. Perlis and C. Thornton.

 Threaded Binary Trees

14/16

§2 Binary Trees

Rule 1: If Tree->Left is null, replace it with a pointer to the
inorder predecessor of Tree.

Rule 2: If Tree->Right is null, replace it with a pointer to
the inorder successor of Tree.

Rule 3: There must not be any loose threads. Therefore a
threaded binary tree must have a head node of
which the left child points to the first node.

typedef struct ThreadedTreeNode *PtrTo ThreadedNode;
typedef struct PtrToThreadedNode ThreadedTree;
typedef struct ThreadedTreeNode {
 int LeftThread; /* if it is TRUE, then Left */
 ThreadedTree Left; /* is a thread, not a child ptr. */
 ElementType Element;
 int RightThread; /* if it is TRUE, then Right

*/
 ThreadedTree Right; /* is a thread, not a child ptr. */
}15/16

§2 Binary Trees

+

A 

 D

B C

〖 Example〗 Given the syntax tree of an expression
(infix)

A + B  C  D

F F

F + F

T A T F  F

F  F T D T

T B T T C T

head node

16/16

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

