CHAPTER 4

TREES

§1 Preliminaries

1. Terminology

Lineal Tree

Pedigree Tree (binary tree)

- [Definition] A tree is a collection of nodes. The collection can be empty; otherwise, a tree consists of
- (1) a distinguished node *r*, called the root;
- (2) and zero or more nonempty (sub)trees T_1, \dots, T_k , each of whose roots are connected by a directed edge from r.

Note:

- > Subtrees must not connect together. Therefore every node in the tree is the root of some subtree.
- \triangleright There are N-1 edges in a tree with N nodes.
- > Normally the root is drawn at the top.

§1 Preliminaries

- degree of a node ::= number of subtrees of the node. For example, degree(A) = 3, degree(F) = 0.
- degree of a tree $:= \max_{\text{node} \in \text{tree}} \{ \text{degree}(\text{node}) \}$ For example, degree of this tree = 3.

- parent ::= a node that has subtrees.
- children ::= the roots of the subtrees of a parent.
- **>** siblings ::= children of the same parent.
- **► leaf (terminal node)** ::= a node with degree 0 (no children).

§1 Preliminaries

(F)

- > path from n_1 to n_k ::= a (unique) sequence of nodes $n_1, n_2, ..., n_k$ such that n_i is the parent of n_{i+1} for $1 \le i < k$.
- length of path ::= number of edges on the path.
- **depth of** $n_i ::=$ length of the unique path from the root to n_i . Depth(root) = 0.
- height of $n_i ::=$ length of the longest path from n_i to a leaf. Height(leaf) = 0, and height(D) = 2.
- height (depth) of a tree ::= height(root) = depth(deepest leaf).
- ancestors of a node ::= all the nodes along the path from the node up to the root.
- descendants of a node ::= all the nodes in its subtrees.

2. Implementation

A List Representation

(A(B,C,D)

(A(B) So the size of each node depends on the number of branches.

Hmmm... That's not good.

FirstChild-NextSibling Representation

Note: The representation is not unique since the children in a tree can be of any order.

§2 Binary Trees

[Definition] A binary tree is a tree in which no node can have more than two children.

Rotate the FirstChild-NextSibling tree clockwise by 45°.

Expression Trees (syntax trees)

Example Given an infix expression:

dConstructing an ExpRession Thee (from postfix expression)

[Example]
$$(a+b)*(c*(d+e))=ab+cde+**$$

dTree Traversals — visit each node exactly once

Preorder Traversal

```
void preorder ( tree_ptr tree )
{ if ( tree ) {
    visit ( tree );
    for (each child C of tree )
        preorder ( C );
    }
}
```

Postorder Traversal

```
void postorder ( tree_ptr tree )
{ if ( tree ) {
    for (each child C of tree )
        postorder ( C );
    visit ( tree );
    }
}
```

Levelorder Traversal

```
void levelorder ( tree_ptr tree )
{  enqueue ( tree );
  while (queue is not empty) {
    visit ( T = dequeue ( ) );
    for (each child C of T )
        enqueue ( C );
    }
}
```


Inorder Traversal

```
void inorder ( tree_ptr tree )
{ if ( tree ) {
    inorder ( tree->Left );
    visit ( tree->Element );
    inorder ( tree->Right );
    }
}
```

[Example] Given an infix expression:

```
A + B * C / D
```



```
Then inorder traversal \Rightarrow A + B * C / D

postorder traversal \Rightarrow A B C * D / +

preorder traversal \Rightarrow +A / * B C D
```

Example Directory listing in a hierarchical file system.

Listing format: files that are of depth d_i will have their names indented by d_i tabs.

```
/usr
  mark
       book
            Ch<sub>1.c</sub>
            Ch2.c
            Ch3.c
       course
            cop3530
                  fall96
                         syl.r
                  spr97
                         syl.r
                  sum97
                         syl.r
       hw.c
  alex
       hw.c
  bill
       work
       course
            cop3212
                  fall96
                         grades
                         p1.r
                         p2.r
                  fall97
                         p2.r
                         p1.r
                         grades
```

```
static void ListDir ( DirOrFile D, int Depth )
{
   if ( D is a legitimate entry ) {
      PrintName (D, Depth );
      if ( D is a directory )
           for (each child C of D )
            ListDir ( C, Depth + 1 );
      }
}
```

```
Note: Depth is an internal variable and must not be seen by the user of this routine. One solution is to define another interface function as the following:

void ListDirectory ( DirOrFile D )

ListDir( D, 0 ); }
```

[Example] Calculating the size of a directory.


```
static int SizeDir ( DirOrFile D )
{
  int TotalSize;
  TotalSize = 0;
  if ( D is a directory )
    for (each child C of D )
        TotalSize += SizeDir(C);
  } /* end if D is legal */
  return TotalSize;
  }
  T(N) = O(N)
```

***** Threaded Binary Trees

Because I enjoy giving vidding.

They are

A. J. Perlis and C. Thornton.

I wish 1 reany done it

Horp comes

Then who should take the credit?

- Rule 1: If Tree->Left is null, replace it with a pointer to the inorder predecessor of Tree.
- Rule 2: If Tree->Right is null, replace it with a pointer to the inorder successor of Tree.
- Rule 3: There must not be any loose threads. Therefore a threaded binary tree must have a head node of which the left child points to the first node.

Example Given the syntax tree of an expression (infix)

