
CHAPTER  4

TREES
§1  Preliminaries

1.  Terminology

Lineal Tree

Pedigree Tree
( binary tree )
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§1  Preliminaries【 Definition 】 A tree is a collection of nodes.  The collection 
can be empty; otherwise, a tree consists of

  (1)  a distinguished node r, called the root;

  (2)  and zero or more nonempty (sub)trees T1, , Tk, each of 
whose roots are connected by a directed edge from r.

Note:

  Subtrees must not connect together.  Therefore every 
node in the tree is the root of some subtree.

  There are              edges in a tree with N nodes.

  Normally the root is drawn at the top.

Note:

  Subtrees must not connect together.  Therefore every 
node in the tree is the root of some subtree.

  There are              edges in a tree with N nodes.

  Normally the root is drawn at the top.

N  1
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  degree of a node ::= number of 
subtrees of the node.  For example, 
degree(A) = 3, degree(F) = 0.

  degree of a tree ::=  
      For example, degree of this tree = 3.

 )node(degreemax
treenode

  leaf ( terminal node ) ::= a node with degree 0 (no children).

  parent ::= a node that has subtrees.

  children ::= the roots of the subtrees of a parent.

  siblings ::= children of the same parent.

§1  Preliminaries
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§1  Preliminaries
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  ancestors of a node ::= all the nodes along the path from the 
node up to the root.

  descendants of a node ::= all the nodes in its subtrees.

  depth of ni ::= length of the unique path 
from the root to ni.   Depth(root) = 0.

  height of ni ::= length of the longest path from ni to a leaf.  
Height(leaf) = 0, and height(D) = 2.

  height (depth) of a tree ::= height(root) = depth(deepest leaf).

  path from n1 to nk ::= a (unique) sequence 
of nodes n1, n2, …, nk  such that ni is the 
parent of ni+1 for 1  i < k.

  length of path ::= number of edges on 
the path.
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2.  Implementation

  List Representation
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So the size of each node
 depends on the number of 

branches.
Hmmm... That’s not good.

§1  Preliminaries
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  FirstChild-NextSibling Representation

FirstChild NextSibling

Element
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Note:  The representation is not unique since the 
children in a tree can be of any order.

§1  Preliminaries
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§2  Binary Trees

【 Definition 】 A binary tree is a tree in which no node 
can have more than two children.

N
A

CB
N

D

E

N
K

N N
F

N N
G H

N
I

N N
J

N N
L

N N
M

Rotate the FirstChild-NextSibling tree clockwise by 45.
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§2  Binary Trees
  Expression Trees (syntax trees)

〖 Example〗  Given an infix expression: 
 
                         A + B  C  D

+

A 

 D

B C Constructing an Expression Tree 
     (from postfix expression)

〖 Example〗  ( a + b ) * ( c * ( d + e ) ) = a b + c d e + * * 

a b

T2 a T1b

+ c d ec +

T1T2

d e

+

a b c +

d e

T1

T2

*

+

a b c +

d e

T1T2 *

*
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 Tree Traversals —— visit each node exactly once

§2  Binary Trees

  Preorder Traversal   Postorder Traversal

  Levelorder Traversal

void  preorder ( tree_ptr  tree )
{  if  ( tree )   {
        visit ( tree );
        for (each child C of tree )
            preorder ( C );
    }
}

void  postorder ( tree_ptr  tree )
{  if  ( tree )   {
        for (each child C of tree )
            postorder ( C );
        visit ( tree );
    }
}

void  levelorder ( tree_ptr  tree )
{   enqueue ( tree );
    while (queue is not empty) {
        visit ( T = dequeue ( ) );
        for (each child C of T )
            enqueue ( C );
    }
}
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§2  Binary Trees

void  inorder ( tree_ptr  tree )
{  if  ( tree )   {
        inorder ( tree->Left );
        visit ( tree->Element );
        inorder ( tree->Right );
   }
}

  Inorder Traversal Iterative Program
void  iter_inorder ( tree_ptr  tree )
{ Stack  S = CreateStack( MAX_SIZE );
  for ( ; ; )  {
     for ( ; tree; tree = tree->Left )
        Push ( tree, S ) ;
     tree = Top ( S );  Pop( S );
     if ( ! tree )  break;
     visit ( tree->Element );
     tree = tree->Right;   }
}〖 Example〗  Given an 

    infix expression:  
             A + B  C  D

+

A 

 D

B C

Then inorder traversal    A + B  C  D

      postorder traversal    A B C  D  +

       preorder traversal    + A   B C D
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〖 Example  〗 Directory listing in a hierarchical file 
system.

Listing format:  files that are of depth di will have their names 
indented by di tabs.

/usr

mark alex bill

book course hw.c hw.c coursework

ch1.c ch2.c ch3.c cop3530

fall96 spr97 sum97

syl.r syl.r syl.r

cop3212

fall96 fall97

grades gradesp1.r p2.r p1.rp2.r

Unix directory

§2  Binary Trees
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§2  Binary Trees/usr
    mark
            book

Ch1.c
Ch2.c
Ch3.c

            course
cop3530
          fall96

syl.r
          spr97

syl.r
          sum97

syl.r
            hw.c
    alex
            hw.c
    bill
            work
            course

cop3212
          fall96

grades
p1.r
p2.r

          fall97
p2.r
p1.r
grades

static void  ListDir ( DirOrFile D, int Depth )
{
    if  ( D is a legitimate entry )   {
        PrintName (D, Depth );
        if ( D is a directory )
            for (each child C of D )
                ListDir ( C, Depth + 1 );
    }
}

Note: Depth is an internal variable and 
must not be seen by the user of this 
routine.  One solution is to define 
another interface function as the 
following:

void ListDirectory ( DirOrFile  D )

{ ListDir( D, 0 );                 }

T ( N ) = O( N )
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§2  Binary Trees〖 Example  〗 Calculating the size of a directory.

/usr

mark alex bill

book course hw.c hw.c coursework

ch1.c ch2.c ch3.c cop3530

fall96 spr97 sum97

syl.r syl.r syl.r

cop3212

fall96 fall97

grades gradesp1.r p2.r p1.rp2.r

Unix directory with file sizes

1

1 1 1

1 1 1 1

1 1

1 1 1 1 1

3 2 4

6 8

1 5 2 3 4 1 2 7 9

static int  SizeDir ( DirOrFile D )
{
    int TotalSize;
    TotalSize = 0;
    if  ( D is a legitimate entry )   {
        TotalSize = FileSize( D );

        if ( D is a directory )
            for (each child C of D )
                TotalSize += SizeDir(C);
    } /* end if D is legal */
    return TotalSize;
} T ( N ) = O( N )
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§2  Binary Trees

                Here comes 
       the typical question of mine:

     Why do we need 
      threaded binary trees?

Because I enjoy giving 
you headaches ... Just kidding.

Okay, think of a full
binary tree with n nodes.

How many links are there?How many of them 
are NULL?

n + 1.

Can I stand that?

Of course not!
You got it!

Any clue on how to
improve the situation?

We can replace 
the null links by “threads”
which will make traversals

easier.

    You are such a
genius !

Oh well, 
I wish I’d have really done it

    Then who should 
take the credit?

They are 
A. J. Perlis and C. Thornton.

  Threaded Binary Trees
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§2  Binary Trees

Rule 1:  If Tree->Left is null, replace it with a pointer to the 
inorder predecessor of Tree.

Rule 2:  If Tree->Right is null, replace it with a pointer to 
the inorder successor of Tree.

Rule 3:  There must not be any loose threads.  Therefore a 
threaded binary tree must have a head node of 
which the left child points to the first node.

typedef  struct  ThreadedTreeNode  *PtrTo  ThreadedNode;
typedef  struct  PtrToThreadedNode  ThreadedTree;
typedef  struct  ThreadedTreeNode {
       int           LeftThread;   /* if it is TRUE, then Left */
       ThreadedTree  Left;      /* is a thread, not a child ptr.   */
       ElementType Element;
       int           RightThread; /* if it is TRUE, then Right 

*/
       ThreadedTree  Right;    /* is a thread, not a child ptr.   */
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§2  Binary Trees

+

A 

 D

B C

〖 Example〗  Given the syntax tree of an expression 
(infix)

A + B  C  D

F F

F + F

T A T F  F

F  F T D T

T B T T C T

head node
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