
§2  Binary Trees

Note: In a tree, the order of children does not matter.  
But in a binary tree, left child and right child are 
different.

Note: In a tree, the order of children does not matter.  
But in a binary tree, left child and right child are 
different.
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 Properties of Binary Trees
§2  Binary Trees

  The maximum number of nodes on level  i  is 2 i1,  i  1.
     The maximum number of nodes in a binary tree of depth k is 

      2 k  1,  k  1.

  For any nonempty binary tree, n0 = n2 + 1 where n0 is the 

number of leaf nodes and n2 the number of nodes of degree 2.

Proof:  Let n1 be the number of nodes of degree 1, and n the 

total number of nodes.  Then

                                n = 210 nnn 

Let B be the number of branches.  Then  n ~ B?n = B + 1.
Since all branches come out of nodes of degree 1 or 

2, we have  B ~ n1 & n2 ?B = n1 + 2 n2. 
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§3  The Search Tree ADT -- Binary Search Trees

【 Definition 】 A binary search tree is a binary tree.  It may 
be empty.  If it is not empty, it satisfies the following 
properties:

(1)  Every node has a key which is an integer, and the keys are 
distinct.

(2)  The keys in a nonempty left subtree must be smaller than 
the key in the root of the subtree.

(3)  The keys in a nonempty right subtree must be larger than 
the key in the root of the subtree.

(4)  The left and right subtrees are also binary search trees.
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§3  Binary Search Trees

2.  ADT

Objects:  A finite ordered list with zero or more elements.

Operations:

 SearchTree  MakeEmpty( SearchTree T ); 

 Position  Find( ElementType X, SearchTree T ); 

 Position  FindMin( SearchTree T ); 

 Position  FindMax( SearchTree T ); 

 SearchTree  Insert( ElementType X, SearchTree T ); 

 SearchTree  Delete( ElementType X, SearchTree T ); 

 ElementType  Retrieve( Position P ); 

4/13



§3  Binary Search Trees

3.  Implementations

 Find

Position  Find( ElementType X,  SearchTree T ) 
{ 
      if ( T == NULL ) 
          return  NULL;  /* not found in an empty tree */
      if ( X < T->Element )  /* if smaller than root */
          return  Find( X, T->Left );  /* search left subtree */
      else 
          if ( X > T->Element )  /* if larger than root */

  return  Find( X, T->Right );  /* search right subtree */
          else   /* if X == root */

  return  T;  /* found */
} 

T( N ) = S ( N ) = O( d )  where d is the depth of X

Must this test 
be performed first?

These are
tail recursions.
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§3  Binary Search Trees

Position  Iter_Find( ElementType X,  SearchTree T ) 
{ 
      /* iterative version of Find */
      while  ( T )   {
          if  ( X == T->Element )  

return T ;  /* found */
          if  ( X < T->Element )
             T = T->Left ; /*move down along left path */
          else
 T = T-> Right ; /* move down along right path */
      }  /* end while-loop */
      return  NULL ;   /* not found */
} 
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§3  Binary Search Trees
 FindMin

Position  FindMin( SearchTree T ) 
{ 
      if ( T == NULL )   
          return  NULL; /* not found in an empty tree */
      else 
          if ( T->Left == NULL )   return  T;  /* found left most */
          else   return  FindMin( T->Left );   /* keep moving to left */
} 

 FindMax

Position  FindMax( SearchTree T ) 
{ 
      if ( T != NULL ) 
          while ( T->Right != NULL )   

T = T->Right;   /* keep moving to find right most */
      return T;  /* return NULL or the right most */
} 

T( N ) = O ( d ) 

T( N ) = O ( d ) 
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§3  Binary Search Trees

 Insert
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Sketch of the idea:

Insert 80

 check if  80 is already in the tree

 80 > 40, so it must be the right child 
of 4080

Insert 35  check if  35 is already in the tree

 35 < 40, so it must be the left child of 40

35

Insert 25  check if  25 is already in the tree

 25 > 5, so it must be the right child of  5

25

This is the last node
 we encounter

when search for the key number.
It will be the parent 

of the new node.
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§3  Binary Search Trees

SearchTree  Insert( ElementType X, SearchTree T ) 
{ 
      if ( T == NULL ) { /* Create and return a one-node tree */ 

T = malloc( sizeof( struct TreeNode ) ); 
if ( T == NULL ) 
   FatalError( "Out of space!!!" ); 
else { 
   T->Element = X; 
   T->Left = T->Right = NULL; } 

      }  /* End creating a one-node tree */
     else  /* If there is a tree */
 if ( X < T->Element ) 

   T->Left = Insert( X, T->Left ); 
else 
   if ( X > T->Element ) 
      T->Right = Insert( X, T->Right ); 
   /* Else X is in the tree already; we'll do nothing */ 

    return  T;   /* Do not forget this line!! */ 
}

How would you
Handle duplicated

Keys?
T( N ) = O ( d ) 
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§3  Binary Search Trees

 Delete

 Delete a leaf node :  Reset its parent link to NULL.

 Delete a degree 1 node :  Replace the node by its single child.

 Delete a degree 2 node :

  Replace the node by the largest one in its left subtree or 
the smallest one in its right subtree.

Note: These kinds of nodes
have degree at most 1.

  Delete the replacing node from the subtree.

〖 Example   〗 Delete 60 40

50

45 55

52

60

70

20

10 30

Solution 1:  reset left subtree. 55

52
Solution 2:  reset right subtree.
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§3  Binary Search Trees

SearchTree  Delete( ElementType X, SearchTree T ) 
{    Position  TmpCell; 
      if ( T == NULL )   Error( "Element not found" ); 
      else  if ( X < T->Element )  /* Go left */ 

    T->Left = Delete( X, T->Left ); 
               else  if ( X > T->Element )  /* Go right */ 

           T->Right = Delete( X, T->Right ); 
         else  /* Found element to be deleted */ 
           if ( T->Left && T->Right ) {  /* Two children */ 
               /* Replace with smallest in right subtree */ 
               TmpCell = FindMin( T->Right ); 
               T->Element = TmpCell->Element; 
               T->Right = Delete( T->Element, T->Right );  } /* End if */
           else {  /* One or zero child */ 
               TmpCell = T; 
               if ( T->Left == NULL ) /* Also handles 0 child */ 
         T = T->Right; 
               else  if ( T->Right == NULL )  T = T->Left; 
               free( TmpCell );  }  /* End else 1 or 0 child */

      return  T; 
}

T( N ) = O ( h )  where h is the height of the tree
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§3  Binary Search Trees

Note: 
        If there are not many deletions, then lazy deletion 
may be employed: add a flag field to each node, to mark 
if a node is active or is deleted.  Therefore we can delete 
a node without actually freeing the space of that node.  
If a deleted key is reinserted, we won’t have to call 
malloc again.

Note: 
        If there are not many deletions, then lazy deletion 
may be employed: add a flag field to each node, to mark 
if a node is active or is deleted.  Therefore we can delete 
a node without actually freeing the space of that node.  
If a deleted key is reinserted, we won’t have to call 
malloc again.

While the number of deleted nodes        
is the same as the number of active nodes       

in the tree, will it seriously affect 
the efficiency of the operations?
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§3  Binary Search Trees
4.  Average-Case Analysis

Question:  Place n elements in a binary search tree.  How 
high can this tree be?

Answer:  The height depends on the order of insertion.

〖 Example〗  Given elements  1, 2, 3, 4, 5, 6, 7.  Insert 
them into a binary search tree in the orders:

4, 2, 1, 3, 6, 5, 7           and             1, 2, 3, 4, 5, 6, 7
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Laboratory Project 2

Normal: Tree Traversals
Hard: Voting Tree

Due:  Monday, October 25th, 2021 at 10:00pm 
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