
§2 Binary Trees

Note: In a tree, the order of children does not matter.
But in a binary tree, left child and right child are
different.

Note: In a tree, the order of children does not matter.
But in a binary tree, left child and right child are
different.

A

B

A

B
and are two different binary trees.

Skewed Binary Trees

A

B

C

D

A

B

C

D

Skewed to the left Skewed to the right

Complete Binary Tree

A

C

G

B

D

H

E F

I

All the leaf nodes are on two
adjacent levels

1/13

 Properties of Binary Trees
§2 Binary Trees

 The maximum number of nodes on level i is 2 i1, i  1.
 The maximum number of nodes in a binary tree of depth k is

 2 k  1, k  1.

 For any nonempty binary tree, n0 = n2 + 1 where n0 is the

number of leaf nodes and n2 the number of nodes of degree 2.

Proof: Let n1 be the number of nodes of degree 1, and n the

total number of nodes. Then

 n = 210 nnn 

Let B be the number of branches. Then n ~ B?n = B + 1.
Since all branches come out of nodes of degree 1 or

2, we have B ~ n1 & n2 ?B = n1 + 2 n2.

1

2

3

 n0 = n2 + 1

2/13

§3 The Search Tree ADT -- Binary Search Trees

【 Definition 】 A binary search tree is a binary tree. It may
be empty. If it is not empty, it satisfies the following
properties:

(1) Every node has a key which is an integer, and the keys are
distinct.

(2) The keys in a nonempty left subtree must be smaller than
the key in the root of the subtree.

(3) The keys in a nonempty right subtree must be larger than
the key in the root of the subtree.

(4) The left and right subtrees are also binary search trees.
30

5

2

40

20

15

12

25

10 22

60

70

8065

1. Definition

3/13

§3 Binary Search Trees

2. ADT

Objects: A finite ordered list with zero or more elements.

Operations:

 SearchTree MakeEmpty(SearchTree T);

 Position Find(ElementType X, SearchTree T);

 Position FindMin(SearchTree T);

 Position FindMax(SearchTree T);

 SearchTree Insert(ElementType X, SearchTree T);

 SearchTree Delete(ElementType X, SearchTree T);

 ElementType Retrieve(Position P);

4/13

§3 Binary Search Trees

3. Implementations

 Find

Position Find(ElementType X, SearchTree T)
{
 if (T == NULL)
 return NULL; /* not found in an empty tree */
 if (X < T->Element) /* if smaller than root */
 return Find(X, T->Left); /* search left subtree */
 else
 if (X > T->Element) /* if larger than root */

 return Find(X, T->Right); /* search right subtree */
 else /* if X == root */

 return T; /* found */
}

T(N) = S (N) = O(d) where d is the depth of X

Must this test
be performed first?

These are
tail recursions.

5/13

§3 Binary Search Trees

Position Iter_Find(ElementType X, SearchTree T)
{
 /* iterative version of Find */
 while (T) {
 if (X == T->Element)

return T ; /* found */
 if (X < T->Element)
 T = T->Left ; /*move down along left path */
 else
 T = T-> Right ; /* move down along right path */
 } /* end while-loop */
 return NULL ; /* not found */
}

6/13

§3 Binary Search Trees
 FindMin

Position FindMin(SearchTree T)
{
 if (T == NULL)
 return NULL; /* not found in an empty tree */
 else
 if (T->Left == NULL) return T; /* found left most */
 else return FindMin(T->Left); /* keep moving to left */
}

 FindMax

Position FindMax(SearchTree T)
{
 if (T != NULL)
 while (T->Right != NULL)

T = T->Right; /* keep moving to find right most */
 return T; /* return NULL or the right most */
}

T(N) = O (d)

T(N) = O (d)

7/13

§3 Binary Search Trees

 Insert

30

5

2

40

Sketch of the idea:

Insert 80

 check if 80 is already in the tree

 80 > 40, so it must be the right child
of 4080

Insert 35  check if 35 is already in the tree

 35 < 40, so it must be the left child of 40

35

Insert 25  check if 25 is already in the tree

 25 > 5, so it must be the right child of 5

25

This is the last node
 we encounter

when search for the key number.
It will be the parent

of the new node.

8/13

§3 Binary Search Trees

SearchTree Insert(ElementType X, SearchTree T)
{
 if (T == NULL) { /* Create and return a one-node tree */

T = malloc(sizeof(struct TreeNode));
if (T == NULL)
 FatalError("Out of space!!!");
else {
 T->Element = X;
 T->Left = T->Right = NULL; }

 } /* End creating a one-node tree */
 else /* If there is a tree */
 if (X < T->Element)

 T->Left = Insert(X, T->Left);
else
 if (X > T->Element)
 T->Right = Insert(X, T->Right);
 /* Else X is in the tree already; we'll do nothing */

 return T; /* Do not forget this line!! */
}

How would you
Handle duplicated

Keys?
T(N) = O (d)

9/13

§3 Binary Search Trees

 Delete

 Delete a leaf node : Reset its parent link to NULL.

 Delete a degree 1 node : Replace the node by its single child.

 Delete a degree 2 node :

 Replace the node by the largest one in its left subtree or
the smallest one in its right subtree.

Note: These kinds of nodes
have degree at most 1.

 Delete the replacing node from the subtree.

〖 Example 〗 Delete 60 40

50

45 55

52

60

70

20

10 30

Solution 1: reset left subtree. 55

52
Solution 2: reset right subtree.

10/13

§3 Binary Search Trees

SearchTree Delete(ElementType X, SearchTree T)
{ Position TmpCell;
 if (T == NULL) Error("Element not found");
 else if (X < T->Element) /* Go left */

 T->Left = Delete(X, T->Left);
 else if (X > T->Element) /* Go right */

 T->Right = Delete(X, T->Right);
 else /* Found element to be deleted */
 if (T->Left && T->Right) { /* Two children */
 /* Replace with smallest in right subtree */
 TmpCell = FindMin(T->Right);
 T->Element = TmpCell->Element;
 T->Right = Delete(T->Element, T->Right); } /* End if */
 else { /* One or zero child */
 TmpCell = T;
 if (T->Left == NULL) /* Also handles 0 child */
 T = T->Right;
 else if (T->Right == NULL) T = T->Left;
 free(TmpCell); } /* End else 1 or 0 child */

 return T;
}

T(N) = O (h) where h is the height of the tree

11/13

§3 Binary Search Trees

Note:
 If there are not many deletions, then lazy deletion
may be employed: add a flag field to each node, to mark
if a node is active or is deleted. Therefore we can delete
a node without actually freeing the space of that node.
If a deleted key is reinserted, we won’t have to call
malloc again.

Note:
 If there are not many deletions, then lazy deletion
may be employed: add a flag field to each node, to mark
if a node is active or is deleted. Therefore we can delete
a node without actually freeing the space of that node.
If a deleted key is reinserted, we won’t have to call
malloc again.

While the number of deleted nodes
is the same as the number of active nodes

in the tree, will it seriously affect
the efficiency of the operations?

12/13

§3 Binary Search Trees
4. Average-Case Analysis

Question: Place n elements in a binary search tree. How
high can this tree be?

Answer: The height depends on the order of insertion.

〖 Example〗 Given elements 1, 2, 3, 4, 5, 6, 7. Insert
them into a binary search tree in the orders:

4, 2, 1, 3, 6, 5, 7 and 1, 2, 3, 4, 5, 6, 7

4

5

6

7

2

1 3

h = 2

2

3

1

4

5
6

7

h = 6

13/13

Laboratory Project 2

Normal: Tree Traversals
Hard: Voting Tree

Due: Monday, October 25th, 2021 at 10:00pm

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

