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CHAPTER 5

PRIORITY QUEUES (HEAPS)

delete the element with the highest \ lowest priority
§1 ADT Model

Objects: A finite ordered list with zero or more elements.
Operations:

IﬂPriorityQueue Initialize( int MaxElements );

J void Insert( ElementType X, PriorityQueue H );

| ElementType DeleteMin( PriorityQueue H );

] ElementType FindMin( PriorityQueue H );
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§2 Simple Implementations

£ Array :
Insertion — add one item at theend ~ © (1)
Deletion — find the largest \ smallest key ~ ©® (n)

remove the item and shift array ~ O( n)
#£x Linked List :

£3 Ordered Arra
Insertio

Better since there are never

more deletions than insertions
£3 Order

Insertion — find the proper position ~ O(n)
add the item ~©(1)
Deletion — remove the first\ last item ~©( 1)




§2 Simple Implementations

£1 Binary Search Tree :

) hetter option?
Now you begin to know me ©

b\—\ <4‘-L.. -~ wmam

always dangerous.
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83 Binary Heap
1. Structure Property:

[ Definition ] A binary tree with n nodes and height h is
complete iff its nodes correspond to the nodes numbered
from 1 to n in the perfect binary tree of height h.

A complete binary tree of height h has between 2"
and 2"'-1 nodes. wmmp h= [log N |

<+ Array Representation : BT[n+1] ( BT[0]is not used)
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§3 Binary Heap

[ Lemma ] If a complete binary tree with n nodes is
represented sequentially, then for any node with index i,
1 <i < n, we have:

li/2] if i #1
None ifi =1

21 if 2i <n

(1) index of parent(i) ={

(2) index of left _child (i) =
None if 2i >n

2i+1 if 2i+1<n
(3) index of right _ child (i) =
None if 2i+1>n



§3 Binary Heap

PriorityQueue Initialize( int MaxElements )
{
PriorityQueue H;
if ( MaxElements < MinPQSize )
return Error( "Priority queue size is too small" );
H = malloc( sizeof ( struct HeapStruct ) );
if (H==NULL)
return FatalError( "Out of spacel!ll");
I* Allocate the array plus one extra for sentinel */
H->Elements = malloc(( MaxElements + 1) * sizeof( ElementType ));
if (H->Elements == NULL )
return FatalError( "Out of space!ll");
H->Capacity = MaxElements;
H->Size = 0;
H->Elements[ 0 ] = MinData; /* set the sentinel */
return H;
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§3 Binary Heap
2. Heap Order Property:
[ Definition ] A min tree is a tree in which the key
value in each node is no larger than the key values in
its children (if any). A min heap is a complete binary
tree that is also a min tree.

Note: Analogously, we can declare a max heap by
changing the heap order property.

[1] g The largest key (1] @ The smallest key

A max heap A min heap



. . §3 Binary Heap
3. Basic Heap Operations:

 insertion

» Sketch of the idea:

L] The only possible position\
for a new node
[2] [3]
@ @ since a heap must be
15 19Q0 \___ Aacomplete binary tree.

[4] [5] [6]

Case 1 : new _item = 21 @ < @ J
Case 2 : new_item=17® > @ @ < @ J

Case 3 : new_item =9 ®>@ ®>@ J
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§3 Binary Heap

I* H->Element[ 0 ] is a sentinel */
void Insert( ElementType X, PriorityQueue H)

{
int i; H->Element[ 0 ] is a
sentinel that is no larger
if (IsFull(H)) { than the minimum
Error( "Priority queue is fu element in the heap.
return;
}

for (i = ++H->Size; H->Elements[i/2]> X;i/=2)
H->Elements[ i ] =H->Elements[ i/ 2 ];

H->Elements[ i ] = X;

Faster than
swap

T(N)=0(logN)
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§3 Binary Heap
[ DeleteMin

Ah! That’s simple --
we only have to delete
the root node ...

» Sketch of the idea:

—

And re-arrange

the rest of the tree so that 1to kec
<
it’s still a min heap. IRhci 4'1%13

v < @

[4]

T(N)=0 (logN)
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§3 Binary Heap

ElementType DeleteMin( PriorityQueue H)
{
int i, Child;
ElementType MinElement, LastElement;
if (IsEmpty(H)) {
Error( "Priority queue is empty" );
return H->Elements[0]; }
MinElement = H->Elements[ 1 ]; /* s&
LastElement = H->Elements[ H->S>

Can we remove it
by adding another
sentinel?

reset size */

for (i=1;i*2<=H->Size; i=2 ild */
Child =i * 2;
if (Child != H->Size&& H->Elements[Child+1] ->Elements[Child])
Child++;

if ( LastElement > H->Elements[ Child ]) /* J/ercolate one level */
H->Elements[ i ] = H->Elements[ Chjd ];
else break; /*find the proper position */
}
H->Elements[ i ] = LastElement;
return MinElement;
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. §3 Binary Heap
4. Other Heap Operations:

Note: Finding any key except the minimum one will
have to take a linear scan through the entire
heap.

[ DecreaseKey (P,A,H) . Percolate up »

Lower the value of the key in the heap H at
position P by a positive amount of A...... SO my
programs can run with highest priority ©.

sys. admin.

1 IncreaseKey (P,A,H) . Percolatedown __

Increases the value of the key in the heap H at
position P by a positive amount of A...... drop
the priority of a process that is consuming

sys. admin.  excessive CPU time.




§3 Binary Heap

| Delete (P,H) ~ DecreaseKey(P, oo, H); DeleteMin(H) _go

Remove the node at position P from the heap H
...... delete the process that is terminated
(abnormally) by a user.

sys. admin.

[ BuildHeap ( H
idHeap (I

Wy <=

Nehhhhh that would be
toooo slow !

Place N input keys into an empty heap H.

150, 80, 40, 30, 10, 70, 110, 100, 20, 90, 60, 50, 120, 140, 130

sys. admin. PercolateDown (7)
PercolateDown (6)
T (N)=? PercolateDown (5)

PercolateDown (4)

PercolateDown (3)
PercolateDown (2)

PercolateDown (1)
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§3 Binary Heap

[ Theorem ] For the perfect binary tree of height h
containing 2"*! - 1 nodes, the sum of the heights of the
nodes is 2" -1-(h + 1).

— T(N)=0(N)

84 Applications of Priority Queues

( Example ) Given a list of N elements and an integer k.
Find the kth largest element.

How many methods can you think
of to solve this problem? What are
their complexities?
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85 d-Heaps ---- All nodes have d children

NN

W © 3-heap

Question: Shall we make d as large as possible?

Note: @ DéleteMin will téke d-1 compérisons to find.the smallest
child. Hence the total time complexity would be O(d log, N)

@ *2 or /2 is merely a bit shift, but *d or /d is not.
® When the priority queue is too large to fit entirely in main
memory, a d-heap will become interesting.

. .
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