
CHAPTER  5

PRIORITY  QUEUES  (HEAPS)

§1  ADT Model

Objects:  A finite ordered list with zero or more elements.

Operations:

 PriorityQueue  Initialize( int MaxElements ); 

 void  Insert( ElementType X, PriorityQueue H ); 

 ElementType  DeleteMin( PriorityQueue H ); 

 ElementType  FindMin( PriorityQueue H ); 

—— delete the element with the highest \ lowest priority
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§2  Simple Implementations
  Array :

Insertion — add one item at the end  ~   ( 1 )
Deletion — find the largest \ smallest key  ~   ( n )
                    remove the item and shift array ~  O( n )

  Linked List :

Insertion — add to the front of the chain  ~   ( 1 )
Deletion — find the largest \ smallest key  ~   ( n )
                    remove the item  ~ ( 1 )

  Ordered Array :

Insertion — find the proper position  ~  O( n )
                     shift array and add the item  ~  O( n )
Deletion — remove the first \ last item  ~ ( 1 )

  Ordered Linked List :

Insertion — find the proper position  ~  O( n )
                     add the item  ~ ( 1 )
Deletion — remove the first \ last item  ~ ( 1 )

Better since there are never 
more deletions than insertions
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  Binary Search Tree :

§2  Simple Implementations

           Ah!  That’s a good idea!  
          Both insertion and deletion will take

O(log N) only.

Well, insertions are random,          
but deletions are NOT.        
We are supposed to delete

The minimum element only.

           Oh, right, then we must always 
delete from the left subtrees….

But hey, what if we keep 
a balanced tree?

Hey you are getting smarter!            
Yes a balanced tree such as AVL tree 

is not a bad idea since only a 
constant factor will be added to 

the run time.  However…

           Oh no… what’s wrong?There are many operations         
related to AVL tree that we don’t really            

need for a priority queue.
Besides, pointers are 

always dangerous.

         I bet you have a better option?
Now you begin to know me              
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§3  Binary Heap
1. Structure Property:

【 Definition】 A binary tree with n nodes and height h is 
complete  iff  its nodes correspond to the nodes numbered 
from 1 to n in the perfect binary tree of height h.
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  Array Representation :  BT [ n + 1 ]  ( BT [ 0 ] is not used)
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§3  Binary Heap

【 Lemma】 If a complete binary tree with n nodes is 
represented sequentially, then for any node with index i,  
1  i  n, we have:
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§3  Binary Heap

PriorityQueue  Initialize( int  MaxElements ) 
{ 
     PriorityQueue  H; 
     if ( MaxElements < MinPQSize ) 

return  Error( "Priority queue size is too small" ); 
     H = malloc( sizeof ( struct HeapStruct ) ); 
     if ( H ==NULL ) 

return  FatalError( "Out of space!!!" ); 
     /* Allocate the array plus one extra for sentinel */ 
     H->Elements = malloc(( MaxElements + 1 ) * sizeof( ElementType )); 
     if ( H->Elements == NULL ) 

return  FatalError( "Out of space!!!" ); 
     H->Capacity = MaxElements; 
     H->Size = 0; 
     H->Elements[ 0 ] = MinData;  /* set the sentinel */
     return  H; 
}
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§3  Binary Heap
2. Heap Order Property:

【 Definition】 A min tree is a tree in which the key 
value in each node is no larger than the key values in 
its children (if any).  A min heap is a complete binary 
tree that is also a min tree.

Note: Analogously, we can declare a max heap by 
changing the heap order property.

Note: Analogously, we can declare a max heap by 
changing the heap order property.
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§3  Binary Heap
3. Basic Heap Operations:

  insertion
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§3  Binary Heap

/* H->Element[ 0 ] is a sentinel */ 
void  Insert( ElementType  X,  PriorityQueue  H ) 
{ 
     int  i; 

     if ( IsFull( H ) ) { 
Error( "Priority queue is full" ); 
return; 

     } 

     for ( i = ++H->Size; H->Elements[ i / 2 ] > X; i /= 2 ) 
H->Elements[ i ] = H->Elements[ i / 2 ]; 

     H->Elements[ i ] = X; 
}

Percolate up

Faster than 
swap

H->Element[ 0 ] is a 
sentinel that is no larger 

than the minimum 
element in the heap.

T (N) = O ( log N )
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§3  Binary Heap

  DeleteMin

 Sketch of the idea:
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The node which must be
removed to keep a

complete binary tree.

  move 18 up to the root18

  find the smaller child of 18 12 18<18
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Ah!  That’s simple --
we only have to delete

the root node ...
And re-arrange 

the rest of the tree so that 
it’s still a min heap.

T (N) = O ( log N )
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§3  Binary Heap

ElementType  DeleteMin( PriorityQueue  H ) 
{ 
    int  i, Child; 
    ElementType  MinElement, LastElement; 
    if ( IsEmpty( H ) ) { 
         Error( "Priority queue is empty" ); 
         return  H->Elements[ 0 ];   } 
    MinElement = H->Elements[ 1 ];  /* save the min element */
    LastElement = H->Elements[ H->Size-- ];  /* take last and reset size */
    for ( i = 1; i * 2 <= H->Size; i = Child ) {  /* Find smaller child */ 
         Child = i * 2; 
         if (Child != H->Size && H->Elements[Child+1] < H->Elements[Child]) 

       Child++;     
         if ( LastElement > H->Elements[ Child ] )   /* Percolate one level */ 

       H->Elements[ i ] = H->Elements[ Child ]; 
         else     break;   /* find the proper position */
    } 
    H->Elements[ i ] = LastElement; 
    return  MinElement; 
}

Percolate 
down

What if this 
condition is 

omitted?

Can we remove it 
by adding another 

sentinel?

11/15



§3  Binary Heap
4. Other Heap Operations:

Note: Finding any key except the minimum one will 
have to take a linear scan through the entire 
heap.

Note: Finding any key except the minimum one will 
have to take a linear scan through the entire 
heap.

  DecreaseKey ( P, , H )

Lower the value of the key in the heap H at 
position P by a positive amount of ……so my 
programs can run with highest priority .

sys. admin.

  IncreaseKey ( P, , H )

Percolate upPercolate up

sys. admin.

Increases the value of the key in the heap H at 
position P by a positive amount of ……drop 
the priority of a process that is consuming 
excessive CPU time.

Percolate downPercolate down
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§3  Binary Heap

  Delete ( P, H )

Remove the node at position P from the heap H  
…… delete the process that is terminated 
(abnormally) by a user.

sys. admin.

DecreaseKey(P, , H); DeleteMin(H)DecreaseKey(P, , H); DeleteMin(H)

  BuildHeap ( H )

Place N input keys into an empty heap H.

sys. admin.

N  successive Insertions ? N  successive Insertions ? 
              Nehhhhh that would be 

toooo slow !
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§3  Binary Heap

【 Theorem】 For the perfect binary tree of height h 
containing 2h+1  1 nodes, the sum of the heights of the 
nodes is 2h+1  1  (h + 1).

T ( N ) = O ( N )

§4  Applications of Priority Queues

〖 Example〗 Given a list of N elements and an integer k.  
Find the kth largest element.

How many methods can you think 
of to solve this problem?  What are 

their complexities?
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§5  d-Heaps ---- All nodes have d children
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Question:  Shall we make d as large as possible?

Note:  DeleteMin will take d  1 comparisons to find the smallest 
child.   Hence the total time complexity would be O(d logd N).

           *2 or /2 is merely a bit shift, but *d or /d is not.
           When the priority queue is too large to fit entirely in main 

memory, a d-heap will become interesting.

Note:  DeleteMin will take d  1 comparisons to find the smallest 
child.   Hence the total time complexity would be O(d logd N).

           *2 or /2 is merely a bit shift, but *d or /d is not.
           When the priority queue is too large to fit entirely in main 

memory, a d-heap will become interesting.
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