CHAPTER 5

PRIORITY QUEUES (HEAPS)

—— delete the element with the highest \ lowest priority

§1 ADT Model

Objects: A finite ordered list with zero or more elements.

Operations:

PriorityQueue Initialize(int MaxElements);

void Insert(ElementType X, PriorityQueue H);

ElementType DeleteMin(PriorityQueue H);

ElementType FindMin(PriorityQueue H);

§2 Simple Implementations

```
\land Array:
       Insertion — add one item at the end \sim \Theta(1)
       Deletion — find the largest \ smallest key \sim \Theta(n)
                   remove the item and shift array \sim O(n)
Linked List:
       Instion — add to the front of the chain \sim \Theta(1)
                 \leftarrow find the largest \ smallest key \sim \Theta(n)
       Deleth
                     move the item \sim \Theta(1)
Ordered Arra
                                        Insertion
                Better since there are never
               more deletions than insertions
   Ordered
       Insertion — find the proper position \sim O(n)
                   add the item \sim \Theta(1)
       Deletion — remove the first \ last item \sim \Theta(1)
```

Binary Search Tree:

Now you begin to know me ③

always dangerous.

better option?

§3 Binary Heap

1. Structure Property:

[Definition] A binary tree with *n* nodes and height *h* is complete iff its nodes correspond to the nodes numbered from 1 to *n* in the perfect binary tree of height *h*.

A complete binary tree of height h has between 2^h and $2^{h+1}-1$ nodes. $\longrightarrow h = \lfloor \log N \rfloor$

♦ Array Representation: BT[n+1] (BT[0] is not used)

Lemma If a complete binary tree with *n* nodes is represented sequentially, then for any node with index i, $1 \le i \le n$, we have:

(1) index of
$$parent(i) = \begin{cases} |i/2| & \text{if } i \neq 1 \\ \text{None if } i = 1 \end{cases}$$

(2) index of left
$$_child(i) = \begin{cases} 2i & \text{if } 2i \leq n \\ \text{None if } 2i > n \end{cases}$$

(2) index of
$$left_child(i) = \begin{cases} 2i & \text{if } 2i \leq n \\ \text{None if } 2i > n \end{cases}$$
(3) index of $right_child(i) = \begin{cases} 2i+1 & \text{if } 2i+1 \leq n \\ \text{None if } 2i+1 > n \end{cases}$

```
PriorityQueue Initialize(int MaxElements)
   PriorityQueue H;
   if ( MaxElements < MinPQSize )</pre>
        return Error("Priority queue size is too small");
   H = malloc( sizeof ( struct HeapStruct ) );
   if ( H ==NULL )
        return FatalError("Out of space!!!");
   /* Allocate the array plus one extra for sentinel */
   H->Elements = malloc(( MaxElements + 1 ) * sizeof( ElementType ));
   if ( H->Elements == NULL )
        return FatalError( "Out of space!!!" );
   H->Capacity = MaxElements;
   H->Size = 0;
   H->Elements[0] = MinData; /* set the sentinel */
   return H;
```

2. Heap Order Property:

[Definition] A min tree is a tree in which the key value in each node is no larger than the key values in its children (if any). A min heap is a complete binary tree that is also a min tree.

Note: Analogously, we can declare a *max* heap by changing the heap order property.

3. Basic Heap Operations:

d insertion

> Sketch of the idea:

The only possible position for a new node since a heap must be a complete binary tree.

```
/* H->Element[ 0 ] is a sentinel */
void Insert( ElementType X, PriorityQueue H )
                   int i;
                                                                                                                                                                                                                                                                                      H->Element[0] is a
                                                                                                                                                                                                                                                                          sentinel that is no larger
                   if ( IsFull( H ) ) {
                                                                                                                                                                                                                                                                                           than the minimum
                                                      Error( "Priority queue is fundamental to the state of the
                                                                                                                                                                                                                                                                                   element in the heap.
                                                     return;
                   for ( i = ++H->Size; H->Elements[ i / 2 ] > X; i /= 2 )
                                                      H->Elements[i] = H->Elements[i/2];
                   H->Elements[ i ] = X;
                                                                                                                                                                                                                                                                                                    Faster than
                                                                                                                                                                                                                                                                                                                             swap
               T(N) = O(\log N)
```

DeleteMin

> Sketch of the idea:

Ah! That's simple --we only have to delete
the root node ...

And re-arrange the rest of the tree so that it's still a min heap.


```
ElementType DeleteMin(PriorityQueue H)
  int i, Child;
                                                  Can we remove it
  ElementType MinElement, LastElement;
                                                  by adding another
  if ( IsEmpty( H ) ) {
                                                       sentinel?
     Error( "Priority queue is empty" );
     return H->Elements[ 0 ]; }
  MinElement = H->Elements[ 1 ]; /* say
  LastElement = H->Elements[ H->Si
                                     ; /* take last/
                                                         reset size */
  for (i = 1; i * 2 <= H->Size; i =  (i * Find small)
     Child = i * 2;
     if (Child != H->Size & H->Elements[Child+1] ✓ /->Elements[Child])
            Child++;
     if ( LastElement > H->Elements[ Child ] ) /* //ercolate one level */
            H->Elements[i] = H->Elements[Chi/d];
           break; /* find the proper position */
     else
  H->Elements[i] = LastElement;
  return MinElement;
```

4. Other Heap Operations:

Note: Finding any key except the minimum one will have to take a linear scan through the entire heap.

 \square DecreaseKey (\mathbb{P} , Δ , \mathbb{H})

Percolate up

Lower the value of the key in the heap \mathbf{H} at position \mathbf{P} by a positive amount of Δso my programs can run with highest priority $\mathbf{\Theta}$.

IncreaseKey ($\mathbf{P}, \Delta, \mathbf{H}$)

Percolate down

Increases the value of the key in the heap \mathbf{H} at position \mathbf{P} by a positive amount of Δdrop the priority of a process that is consuming excessive CPU time.

DecreaseKey(P, ∞, H); DeleteMin(H)

Remove the node at position P from the heap H delete the process that is terminated (abnormally) by a user.

BuildHeap (H)

Nehhhhh that would be toooo slow!

Place *N* input keys into an empty heap **H**.

150, 80, 40, 30, 10, 70, 110, 100, 20, 90, 60, 50, 120, 140, 130

- PercolateDown (7)
- PercolateDown (6)
- PercolateDown (5)
- PercolateDown (4)
- PercolateDown (3)
- PercolateDown (2)
- PercolateDown (1)

Theorem For the perfect binary tree of height h containing $2^{h+1} - 1$ nodes, the sum of the heights of the nodes is $2^{h+1} - 1 - (h + 1)$.

$$T(N) = O(N)$$

§4 Applications of Priority Queues

Example Given a list of *N* elements and an integer *k*. Find the *k*th largest element.

How many methods can you think of to solve this problem? What are their complexities?

§5 *d*-Heaps ---- All nodes have *d* children

Question: Shall we make *d* as large as possible?

Note: ① DeleteMin will take d - 1 comparisons to find the smallest child. Hence the total time complexity would be $O(d \log_d N)$.

- ② *2 or /2 is merely a bit shift, but *d or /d is not.
- **3** When the priority queue is too large to fit entirely in main memory, a *d*-heap will become interesting.