CHAPTER 9

GRAPH ALGORITHMS

§1 Definitions

- G(V, E) where G ::= graph, V = V(G) ::= finite nonempty set of vertices, and <math>E = E(G) ::= finite set of edges.
- **Undirected graph:** $(v_i, v_j) = (v_j, v_i) ::=$ the same edge.
- **Directed graph (digraph):** $\langle v_i, v_j \rangle ::= v_i \rightarrow v_j \neq \langle v_j, v_i \rangle$
- **Restrictions:**
 - (1) Self loop is illegal. (1)
 - (2) Multigraph is not considered

Complete graph: a graph that has the maximum number of edges

- v_i v_j v_i and v_j are adjacent; v_i , v_i) is incident on v_i and v_j
- v_i v_j v_i is adjacent to v_j ; v_j is adjacent from v_i ; v_i v_j is incident on v_i and v_i
- Subgraph G' \subset G ::= V(G') \subseteq V(G) && E(G') \subseteq E(G)
- Path (\subset G) from v_p to $v_q ::= \{v_p, v_{i1}, v_{i2}, \dots, v_{in}, v_q\}$ such that $(v_p, v_{i1}), (v_{i1}, v_{i2}), \dots, (v_{in}, v_q)$ or $(v_{i1}, v_{i2}), \dots, (v_{in}, v_q)$ belong to E(G)
- **Length of a path ::= number of edges on the path**
- Simple path ::= v_{i1} , v_{i2} , \cdots , v_{in} are distinct
- **Cycle ::=** simple path with $v_p = v_q$
- v_i and v_j in an undirected G are connected if there is a path from v_i to v_j (and hence there is also a path from v_i to v_i)
- An undirected graph G is connected if every pair of distinct v_i and v_j are connected

- **Connected)** Component of an undirected G ::= the maximal connected subgraph
- **► A tree ::= a graph that is connected and** *acyclic*
- **A DAG** ::= a directed acyclic graph
- Strongly connected directed graph G ::= for every pair of v_i and v_j in V(G), there exist directed paths from v_i to v_j and from v_j to v_i . If the graph is connected without direction to the edges, then it is said to be weakly connected
- Strongly connected component ::= the maximal subgraph that is strongly connected
- Degree(v)::= number of edges incident to v. For a directed G, we have in-degree and out-degree. For example:

in-degree(
$$v$$
) = 3; out-degree(v) = 1; degree(v) = 4

 \searrow Given G with n vertices and e edges, then

$$e = \left(\sum_{i=0}^{n-1} d_i\right) / 2$$
 where $d_i = \text{degree}(v_i)$

Representation of Graphs

Adjacency Matrix

adj_mat [n] [n] is defined for G(V, F) with n vertices, $n \ge 1$:

'OW

No The trick is to store the matrix as a 1-D array: adj_mat [n(n+1)/2] = { a_{11} , a_{21} , a_{22} , ..., a_{n1} , ..., a_{nn} } The index for a_{ij} is (i * (i-1)/2 + j).

 $degree(i) = \int_{j-v}^{n-1} adi mat[i][i] \quad (if C is directed)$

+ $\sum_{j=0}^{n-1} \operatorname{adj_mat}[j][i]$ (if G is directed)

Adjacency Lists

Replace each row by a linked list

For undirected G:

$$S = n$$
 heads + $2e$ nodes = $(n+2e)$ ptrs+ $2e$ ints

Degree(i) = number of nodes in graph[i] (if G is undirected). T of examine E(G) = O(n + e)

If G is directed, we need to find in-degree(v) as well.

Method 1 Add inverse adjacency lists.

Method 2 Multilist (Ch 3.2) representation for adj_mat[i] [j]

Adjacency Multilists

In adjacency list, for each (i, j) we have two nodes:

- > adj_mat [i] [j] = Weight it easy to do so.
- adjacency lists \ multilists : add a weight field to the node.

§2 Topological Sort

[Example] Courses needed for a computer science degree at a hypothetical university

Course number	Course name	Prerequisites
C 1	Programming I	None
C2		None
C3		C2
	How shall we convert this	s list
C5	into a graph?	
C6	mito a graph:	
C 7		, JO
C8	Assembly	C3
C9	Operating Systems	, C8
C10	Programming Languages	C7 65 m
C11	Compiler Design	C10
C12	Artificial Intelligence	C 7
C13	Computational Theory	C 7
C14	Parallel Algorithms	C13
C15	Numerical Analysis	C6

- AOV Network ::= digraph G in which V(G) represents activities (e.g. the courses) and E(G) represents precedence relations (e.g. means that C1 is a prerequisite course of C3).
- i is a predecessor of j ::= there is a path from i to j i is an immediate predecessor of $j ::= < i, j > \in E(G)$ Then j is called a successor (immediate successor) of i
- **Partial order ::=** a precedence relation which is both transitive $(i \rightarrow k, k \rightarrow j \Rightarrow i \rightarrow j)$ and irreflexive $(i \rightarrow i)$ is impossible $(i \rightarrow k, k \rightarrow j)$.

Note: If the precedence relation is reflexive, then there must be an *i* such that *i* is a predecessor of *i*. That is, *i* must be done before *i* is started. Therefore if a project is feasible, it must be irreflexive.

Feasible AOV network must be a dag (directed acyclic graph).

Definition A topological order is a linear ordering of the vertices of a graph such that, for any two vertices, *i*, *j*, if *i* is a predecessor of *j* in the network then *i* precedes *j* in the linear ordering.

Example One possible suggestion on course schedule for a computer science degree could be:

Course number	Course name	Prerequisites
C 1	Programming I	None
C2	Discrete Mathematics	None
C4	Calculus I	None
C3	Data Structure	C1, C2
C5	Calculus II	C4
C6	Linear Algebra	C 5
C7	Analysis of Algorithms	C3, C6
C15	Numerical Analysis	C6
C8	Assembly Language	C 3
C10	Programming Languages	C 7
C9	Operating Systems	C7, C8
C12	Artificial Intelligence	C 7
C13	Computational Theory	C 7
C11	Compiler Design	C10
C14	Parallel Algorithms	C13

Note: The topological orders may not be unique for a network. For example, there are several ways (topological orders) to meet the degree requirements in computer science.

Test an AOV for feasibility, and generate a topological order if possible.

```
void Topsort( Graph G )
{ int Counter;
  Vertex V, W;
  for ( Counter = 0; Counter < NumVertex; Counter ++ ) {</pre>
        V = FindNewVertexOfDegreeZero(); /* O(|V|) */
        if ( V == NotAVertex ) {
          Error ( "Graph has a cycle" ); break; }
        TopNum[ V ] = Counter; /* or output V */
        for ( each W adjacent to V )
          Indegree[ W ] − − ;
                                    T = O(|V|^2)
```

Improvement: Keep all the unassigned vertices of degree 0 in a special

```
box (queue or stack).
                               Mistakes in Fig 9.4 on
void Topsort( Graph G )
                                       p.289
{ Queue Q;
  int Counter = 0;
  Vertex V, W;
  Q = CreateQueue( NumVertex ); MakeEmpty( Q );
  for ( each vertex V )
                                                            Indegree
        if (Indegree[V] == 0) Enqueue(V, Q);
  while (!IsEmpty(Q)) {
        V = Dequeue(Q);
                                                            V_3
        TopNum[ V ] = ++ Counter; /* assign next */
                                                            V_{4}
        for ( each W adjacent to V )
                                                            V_5
          if ( – – Indegree[ W ] == 0 ) Enqueue( W, Q );
  } /* end-while */
  if ( Counter != NumVertex )
        Error( "Graph has a cycle" );
  DisposeQueue(Q); /* free memory */
```