
CHAPTER 9

GRAPH ALGORITHMS §1 Definitions

 G(V, E) where G ::= graph, V = V(G) ::= finite nonempty set of
vertices, and E = E(G) ::= finite set of edges.

 Undirected graph: (vi , vj) = (vj , vi) ::= the same edge.

 Directed graph (digraph): < vi , vj > ::=  < vj , vi >vi vj

tail head
 Restrictions :
 (1) Self loop is illegal.
 (2) Multigraph is not considered

0 1 0

1 2

 Complete graph: a graph that has the maximum number of edges

0

2
1 3

2
)1(2 E of #

V of #






nn
nC

n
0

2
1 3

)1(E of #

V of #
2 



nnP

n

n

1/12

vi vj vi and vj are adjacent ;
 (vi , vj) is incident on vi and vj

vi vj vi is adjacent to vj ; vj is adjacent from vi ;
 < vi , vj > is incident on vi and vj

 Subgraph G’  G ::= V(G’)  V(G) && E(G’)  E(G)

 Path ( G) from vp to vq ::= { vp, vi1, vi2, , vin, vq } such that (vp, vi1),
(vi1, vi2), , (vin, vq) or < vp, vi1 >, , < vin, vq > belong to E(G)

 Length of a path ::= number of edges on the path

 Simple path ::= vi1, vi2, , vin are distinct

 Cycle ::= simple path with vp = vq

 vi and vj in an undirected G are connected if there is a path from vi to vj
(and hence there is also a path from vj to vi)

 An undirected graph G is connected if every pair of distinct vi and vj are
connected

§1 Definitions

2/12

§1 Definitions

 (Connected) Component of an undirected G ::= the maximal connected
subgraph

 A tree ::= a graph that is connected and acyclic

 Strongly connected directed graph G ::= for every pair of vi and vj in
V(G), there exist directed paths from vi to vj and from vj to vi. If the
graph is connected without direction to the edges, then it is said to be
weakly connected

 Strongly connected component ::= the maximal subgraph that is
strongly connected

 Degree(v) ::= number of edges incident to v. For a directed G, we have
in-degree and out-degree. For example:

v in-degree(v) = 3; out-degree(v) = 1; degree(v) = 4

 Given G with n vertices and e edges, then

)(degree where 2
1

0
ii

n

i
i vdde 







 





 A DAG ::= a directed acyclic graph

3/12

§1 Definitions

 Representation of Graphs

Adjacency MatrixAdjacency Matrix

adj_mat [n] [n] is defined for G(V, E) with n vertices, n  1 :



 


otherwise 0

)(,or),(if 1
]][[adj_mat

GEvvvv
ji jiji

Note: If G is undirected, then adj_mat[][] is symmetric.
Thus we can save space by storing only half of the
matrix.

directed) isG (if]][[adj_mat

)undirected isG (if]][[adj_mat)(degree

1

0

1

0

















n

j

n

j

ij

jii

I know
what you’re about to say:
this representation wastes

space if the graph has a lot of
vertices but very few edges,

right?

Hey you begin to know me!
Right. And it wastes time as well.
If we are to find out whether or not

G is connected, we’ll have to examine
all edges. In this case

T and S are both O(n2)

 The trick is to store the matrix as a 1-D array:
 adj_mat [n(n+1)/2] = { a11, a21, a22, ..., an1, ..., ann }

The index for aij is (i  (i  1) / 2 + j).

4/12

§1 Definitions

Adjacency ListsAdjacency Lists Replace each row by a linked list

〖 Example〗 0 1 2
















000
101
010

]3][3[adj_mat 1


graph[0]

0


graph[1]

2


graph[2]

Note: The order of nodes in
each list does not matter.

For undirected G:
S = n heads + 2e nodes = (n+2e) ptrs+2e ints

5/12

§1 Definitions

Degree(i) = number of nodes in graph[i] (if G is undirected).
T of examine E(G) = O(n + e)

If G is directed, we need to find in-degree(v) as well.

Method 1 Add inverse adjacency lists.

〖 Example〗 0 1 2

1


inv[0]

0


inv[1]

1


inv[2]

Method 2 Multilist (Ch 3.2) representation for adj_mat[i] [j]

tail i head j

 

column for head

row for tail

6/12

§1 Definitions

Adjacency MultilistsAdjacency Multilists

In adjacency list, for each (i, j) we have two nodes:

j graph[i] ……

i graph[j] ……

Now let’s combine the two nodes
into one: graph[i] graph[j]node

v1 v2

 
mark

next
v1

next
v2

〖 Example〗 0

1 2

3

graph[0]

graph[1]

graph[2]

graph[3]

0 1
 

0 2
 

2 3
 

 Wait a minute ...
 Look at the space taken:

(n+2e) ptrs + 2e ints
and “mark” is not counted.

What’s the advantage?

 Sometimes we need to
 mark the edge after examine it,

and then find the next edge.
This representation makes

it easy to do so.

Weighted EdgesWeighted Edges

 adj_mat [i] [j] = weight

 adjacency lists \ multilists : add a weight field to the node.

7/12

§2 Topological Sort

〖 Example〗 Courses needed for a computer science
degree at a hypothetical university

Course number Course name Prerequisites
C1 Programming I None
C2 Discrete Mathematics None
C3 Data Structure C1, C2
C4 Calculus I None
C5 Calculus II C4
C6 Linear Algebra C5
C7 Analysis of Algorithms C3, C6
C8 Assembly Language C3
C9 Operating Systems C7, C8
C10 Programming Languages C7
C11 Compiler Design C10
C12 Artificial Intelligence C7
C13 Computational Theory C7
C14 Parallel Algorithms C13
C15 Numerical Analysis C6

How shall we convert this list
into a graph?

8/12

§2 Topological Sort

 AOV Network ::= digraph G in which V(G) represents activities
(e.g. the courses) and E(G) represents precedence relations (e.g.

 means that C1 is a prerequisite course of C3).C1 C3

 i is a predecessor of j ::= there is a path from i to j

 i is an immediate predecessor of j ::= < i, j >  E(G)
 Then j is called a successor (immediate successor) of i

 Partial order ::= a precedence relation which is both transitive
(i  k, k  j  i  j) and irreflexive (i  i is impossible).

Feasible AOV network must be a Feasible AOV network must be a dagdag (directed acyclic graph). (directed acyclic graph).

Note: If the precedence relation is reflexive, then there must be
an i such that i is a predecessor of i. That is, i must be done
before i is started. Therefore if a project is feasible, it must
be irreflexive.

Note: If the precedence relation is reflexive, then there must be
an i such that i is a predecessor of i. That is, i must be done
before i is started. Therefore if a project is feasible, it must
be irreflexive.

9/12

§2 Topological Sort【 Definition 】 A topological order is a linear ordering of the vertices
of a graph such that, for any two vertices, i, j, if i is a predecessor of j in
the network then i precedes j in the linear ordering.

〖 Example〗 One possible suggestion on course schedule for a
computer science degree could be:

Course number Course name Prerequisites

C1 Programming I None
C2 Discrete Mathematics None
C4 Calculus I None
C3 Data Structure C1, C2
C5 Calculus II C4
C6 Linear Algebra C5
C7 Analysis of Algorithms C3, C6
C15 Numerical Analysis C6
C8 Assembly Language C3
C10 Programming Languages C7
C9 Operating Systems C7, C8
C12 Artificial Intelligence C7
C13 Computational Theory C7
C11 Compiler Design C10
C14 Parallel Algorithms C13

10/12

§2 Topological Sort

Note: The topological orders may not be unique for a network.
For example, there are several ways (topological orders) to
meet the degree requirements in computer science.

Note: The topological orders may not be unique for a network.
For example, there are several ways (topological orders) to
meet the degree requirements in computer science.

GoalGoal Test an AOV for feasibility, and generate a topological
order if possible.

void Topsort(Graph G)
{ int Counter;
 Vertex V, W;
 for (Counter = 0; Counter < NumVertex; Counter ++) {

V = FindNewVertexOfDegreeZero();
if (V == NotAVertex) {
 Error (“Graph has a cycle”); break; }
TopNum[V] = Counter; /* or output V */
for (each W adjacent to V)
 Indegree[W] – – ;

 }
}

/* O(|V|) */

 T = O(|V|2)

11/12

§2 Topological Sort

 Improvement: Keep all the unassigned vertices of degree 0 in a special
box (queue or stack).

v1 v2

v6 v7

v3 v4 v5

void Topsort(Graph G)
{ Queue Q;
 int Counter = 0;
 Vertex V, W;
 Q = CreateQueue(NumVertex); MakeEmpty(Q);
 for (each vertex V)

if (Indegree[V] == 0) Enqueue(V, Q);
 while (!IsEmpty(Q)) {

V = Dequeue(Q);
TopNum[V] = ++ Counter; /* assign next */
for (each W adjacent to V)
 if (– – Indegree[W] == 0) Enqueue(W, Q);

 } /* end-while */
 if (Counter != NumVertex)

Error(“Graph has a cycle”);
 DisposeQueue(Q); /* free memory */
}

0v1

Indegree

1v2

2v3

3v4

1v5

3v6

2v7
v1

0

v2

1
21
0 v5

0 v4

1

v6

0 v3

2
0

v7

10

T = O(|V| + |E|)

12/12

Mistakes in Fig 9.4 on
p.289

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

