
§3 Shortest Path Algorithms

Given a digraph G = (V, E), and a cost function c(e)

for e  E(G). The length of a path P from source to

destination is (also called weighted path length).
Pe

i

i

ec)(

1. Single-Source Shortest-Path Problem

Given as input a weighted graph, G = (V, E), and a
distinguished vertex, s, find the shortest weighted path
from s to every other vertex in G.

v1 v2

v6 v7

v3 v4 v5

2

4

2

1 3 10

2

5
8 4 6

1

v1 v2

v6 v7

v3 v4 v5

2

4

2

1
3

–10

2

5
8 4 6

1

Negative-cost
cycle

Note: If there is no
negative-cost cycle,
the shortest path
from s to s is
defined to be zero.

Note: If there is no
negative-cost cycle,
the shortest path
from s to s is
defined to be zero.

1/11

§3 Shortest Path Algorithms

 Unweighted Shortest Paths

v1 v2

v6 v7

v3 v4 v50

0:  v3

1:  v1 and v6

1

1

2:  v2 and v4

2

2

3:  v5 and v7

3

3

 Sketch of the idea

Breadth-first
search

 Implementation

Table[i].Dist ::= distance from s to vi /* initialized to be 
except for s */

Table[i].Known ::= 1 if vi is checked; or 0 if not

Table[i].Path ::= for tracking the path /* initialized to be 0 */

2/11

§3 Shortest Path Algorithms

void Unweighted(Table T)
{ int CurrDist;
 Vertex V, W;
 for (CurrDist = 0; CurrDist < NumVertex; CurrDist ++) {
 for (each vertex V)

if (!T[V].Known && T[V].Dist == CurrDist) {
 T[V].Known = true;
 for (each W adjacent to V)
 if (T[W].Dist == Infinity) {
T[W].Dist = CurrDist + 1;
T[W].Path = V;
 } /* end-if Dist == Infinity */
} /* end-if !Known && Dist == CurrDist */

 } /* end-for CurrDist */
}

The worst case: v1v2v6v7 v3v4v5v9 v8

 T = O(|V|2)

If V is unknown yet
has Dist < Infinity,
then Dist is either

CurrDist or
CurrDist+1.

3/11

§3 Shortest Path Algorithms
 Improvement

void Unweighted(Table T)
{ /* T is initialized with the source vertex S given */
 Queue Q;
 Vertex V, W;
 Q = CreateQueue (NumVertex); MakeEmpty(Q);
 Enqueue(S, Q); /* Enqueue the source vertex */
 while (!IsEmpty(Q)) {
 V = Dequeue(Q);
 T[V].Known = true; /* not really necessary */
 for (each W adjacent to V)

if (T[W].Dist == Infinity) {
 T[W].Dist = T[V].Dist + 1;
 T[W].Path = V;
 Enqueue(W, Q);
} /* end-if Dist == Infinity */

 } /* end-while */
 DisposeQueue(Q); /* free memory */
}

v1 v2

v6 v7

v3 v4 v5

0

v1

Dist Path

v2

0v3

v4

v5

v6

v7

0
0
0
0
0
0
0 v3

v71 v3

v1

1 v3 v6

1

1

2

2

v1

v2

2

2

v1

v4

3

3

v2

v5

3

3

v4

T = O(|V| + |E|)

4/11

§3 Shortest Path Algorithms

 Dijkstra’s Algorithm (for weighted shortest paths)

Let S = { s and vi’s whose shortest paths have been found }

For any u  S, define distance [u] = minimal length of
path { s  (vi  S)  u }. If the paths are generated in non-
decreasing order, then
 the shortest path must go through ONLY vi  S ;

 Why? If it is not true, then
there must be a vertex w on this path

that is not in S. Then ...

 u is chosen so that distance[u] = min{ wS |
distance[w] } (If u is not unique, then we may select
any of them) ; /* Greedy Method */

 if distance [u1] < distance [u2] and we add u1 into S,
then distance [u2] may change. If so, a shorter path
from s to u2 must go through u1 and distance’ [u2] =
distance [u1] + length(< u1, u2>).

5/11

§3 Shortest Path Algorithms

void Dijkstra(Table T)
{ /* T is initialized by Figure 9.30 on p.303 */
 Vertex V, W;
 for (; ;) {
 V = smallest unknown distance vertex;
 if (V == NotAVertex)

break;
 T[V].Known = true;
 for (each W adjacent to V)

if (!T[W].Known)
 if (T[V].Dist + Cvw < T[W].Dist) {
 Decrease(T[W].Dist to
 T[V].Dist + Cvw);
T[W].Path = V;
 } /* end-if update W */

 } /* end-for(; ;) */
}

v1 v2

v6 v7

v3 v4 v5

2

4

2

1 3 10

2

5
8 4 6

1

0v1

Dist Path

v2

v3

v4

v5

v6

v7

0

0

0

0

0

0

0

2 v1

1 v1

3 v4

3 v4

9 v4

5 v4

8 v36 v7
/* not work for edge with negative cost */

Please read Figure 9.31 on p.304 for printing the path.

/* O(|V|) */

6/11

§3 Shortest Path Algorithms
 Implementation 1

V = smallest unknown distance vertex;
/* simply scan the table – O(|V|) */

T = O(|V|2 + |E|) Good if the graph is dense

 Implementation 2

V = smallest unknown distance vertex;
/* keep distances in a priority queue and call DeleteMin – O(log|V|) */

Decrease(T[W].Dist to T[V].Dist + Cvw);

/* Method 1: DecreaseKey – O(log|V|) */

T = O(|V| log|V| + |E| log|V|) = O(|E| log|V|)

/* Method 2: insert W with updated Dist into the priority queue */

/* Must keep doing DeleteMin until an unknown vertex emerges */

Good if the
graph is sparse

T = O(|E| log|V|) but requires |E| DeleteMin with |E| space

 Other improvements: Pairing heap (Ch.12) and Fibonacci heap (Ch. 11)

7/11

§3 Shortest Path Algorithms

 Graphs with Negative Edge Costs

Hey I have a good idea:
 why don’t we simply add a constant

  to each edge and thus remove
negative edges?

Too simple, and naïve…
Try this one out:

1

3 4

22

– 2

2
1

void WeightedNegative(Table T)
{ /* T is initialized by Figure 9.30 on p.303 */
 Queue Q;
 Vertex V, W;
 Q = CreateQueue (NumVertex); MakeEmpty(Q);
 Enqueue(S, Q); /* Enqueue the source vertex */
 while (!IsEmpty(Q)) {
 V = Dequeue(Q);
 for (each W adjacent to V)

if (T[V].Dist + Cvw < T[W].Dist) {
 T[W].Dist = T[V].Dist + Cvw;
 T[W].Path = V;
 if (W is not already in Q)
 Enqueue(W, Q);
} /* end-if update */

 } /* end-while */
 DisposeQueue(Q); /* free memory */
}

/* negative-cost cycle will cause indefinite loop */

/* no longer once
per edge */

/* each vertex can dequeue at most |V|
times */

T = O(|V|  |E|)

8/11

§3 Shortest Path Algorithms
 Acyclic Graphs

If the graph is acyclic, vertices may be selected in topological order
since when a vertex is selected, its distance can no longer be
lowered without any incoming edges from unknown nodes.

T = O(|E| + |V|) and no priority queue is needed.

 Application: AOE (Activity On Edge) Networks
 —— scheduling a project

vj
ai ::= activity Signals the completion of ai

 EC[j] \ LC[j] ::= the earliest \
latest completion time for node vj

 CPM (Critical Path Method)
Lasting Time

Slack Time

EC Time

LC Time

 Index of vertex

9/11

§3 Shortest Path Algorithms〖 Example〗 AOE network of a hypothetical project

0
1

2

3

4

5

6

7
8

start

finish

a0=6

a1=4

a2=5

a3=1

a4=1

a5=2

a6=9

a7=7

a8=4

a9=2

a10=4

 Calculation of EC: Start from v0, for any ai = <v, w>, we have
}][{max][,

),(
wv

Ewv
CvECwEC 



0
6

4

5

7

7

16

14

18

a11=0

Dummy activity

 Calculation of LC: Start from the last vertex v8, for any ai =
<v, w>, we have }][{min][,

),(
wv

Ewv
CwLCvLC 



18

16

14

7

75

6

6
0

 Slack Time of <v,w> = wvCvECwLC ,][][

2

3

2

 Critical Path ::= path consisting entirely of zero-slack edges.

10/11

§3 Shortest Path Algorithms

2. All-Pairs Shortest Path Problem

For all pairs of vi and vj (i  j), find the shortest path
between.

Method 1 Use single-source algorithm for |V| times.

T = O(|V|3) – works fast on sparse graph.

Method 2 O(|V|3) algorithm given in Ch.10, works
faster on dense graphs.

11/11

Laboratory Project 3

Normal: Ambulance Dispatch
Hard: The 2nd-shortest Path

Due: Monday, November 22nd, 2021 at 10:00pm

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

