83 Shortest Path Algorithms

Given a digraph G = ('V, E), and a cost function c(e)
for e € E(G). The length of a path P from source to
destination is Z c(e;) (also called weighted path length).

e;cP

1. Single-Source Shortest-Path Problem

Given as input a weighted graph, G = (V, E), and a
distinguished vertex, s, find the shortest weighted path

from s to every other vertex in G. K_\
Neaantive-coct

_~ Note: If there is no
negative-cost cycle,
the shortest path
from s to s is

defined to be zero.

1/11

§3 Shortest Path Algorithms
» Unweighted Shortest Paths

** Sketch of the idea

: oy, e
S IR A Breadth-first

search

: 0 v,andyv,

: 0 v, andyv,

+¢* Implementation

Table] i].Dist ::= distance from s to v, /* initialized to be oo
except for s */

Table[1]. Known ::= 1 if v, is checked; or 0 if not
Table[i].Path ::= for tracking the path /* initialized to be 0 */

2/11

3/11

§3 Shortest Path Algorithms

void Unweighted(Table T)
{ int CurrDist;
Vertex V, W;
for (CurrDist = 0; CurrDist < NumVertex; CurrDist ++) {
for (each vertex V)
if (IT[V].Known && T[V].Dist == CurrDist) {
T[V].Known = true;
for (each W adjacent to
if (T[W].Dist == Infinity) {
T[W].Dist = CurrDist + 1;
T[W].Path =V,
} I* end-if Dist == Infinity */
} I* end-if IKnown && Dist == CurrDist
} I* end-for CurrDist */

}

If V is unknown yet
has Dist < Infinity,
then Dist is either

CurrDist or

CurrDist+1.

T=0(|V[*)

The worst case: @ @ G @ @ @ @ @ G

§3 Shortest Path Algorithms
X Improvement

void Unweighted(Table T)

{ I* Tis initialized with the source vertex S given */
Queue Q;
Vertex V, W;
Q = CreateQueue (NumVertex); MakeEmpty(Q);
Enqueue(S, Q); I* Enqueue the source vertex */

while ('IsEmpty(Q)) {
V = Dequeue(Q);

T[V].Known = true; /* not really necessary */ Dist Path
for (each W adjacent to V) Vi | 1]Vs
if (T[W].Dist == Infinity) { v, [2%
T[W].Dist = T[V].Dist + 1; v, [0]0
T[W].Path = V; v, [2 v,
Enqueue(W, Q); v. 13 1v
} I* end-if Dist == Infinity */ ’ -
} I* end-while *I Vo [L1Vs
DisposeQueue(Q); I* free memory */ V: 131 Vs

7 r=0(V|+El)

4/11

5/11

§3 Shortest Path Algorithms

» Dijkstra’s Algorithm (for weighted shortest paths)

Let S = { s and v;’s whose shortest paths have been found }

For any u € S, define distance [u] = minimal length of
path{s— (v,€ S)— u }. If the paths are generated in non-

decreasing order, then
@ the shortest path must go through ONLY v.€ S ;

@ u is chosen so tha

dista [lwg] if‘l{ u 111% l;uuenlt(il en we may select
t%eice?jus b>a vereW Metﬁns path
if distange [¢mbt i‘i'i%la“Pﬁéﬂzl and we ac

from s to u, must go through u, and distance’ [u,] =
distance [u,] + length(< u,, u,>).

§3 Shortest Path Algorithms

void Dijkstra(Table T)
{ I*Tis initialized by Figure 9.30 on p.303 */
Vertex V, W;
for(;;){ IFO(|V])*
V = smallest unknown distance vertex;
if (V == NotAVertex)
break;
T[V].Known = true; Dist Path
for (each W adjacentto V) vi [oTo
if (!T[W].Known)
if (T[V].Dist + Cvw < T[W].Dist) { Va | 2|V
Decrease(T[W].Dist to vi [3|v
T[V].DistF CVvW J; :
T[W].Path = V; Va | 1]V,
} I* end-if update W */ vi [3]v
} I* end-for(; ;) */ :
Vs 6|V,
* 1 1 *
I* not work for edge with negative cost */ V v, I3[,
Q)
Please read Figure 9.31 on p.304 for printing the path. []

6/11

. §3 Shortest Path Algorithms
%* Implementation 1

V = smallest unknown distance vertex;
I* simply scan the table — O(|V]) */

T=0(|V]?+|E|) //aod if the graph is deD

% Implementation 2

V = smallest unknown distance vertex;
I* keep distances in a priority queue and call DeleteMin — O(log|V|) */

Decrease(T[W].Dist to T[V].Dist + Cvw);

Good if the

[* Method 1: DecreaseKey — O(log|V|) */ graph is sparse

T = O(|V]log|V| + |[E|log|V|) = O([E| log|V
I* Method 2: insert W with updated Dist into the priority queue */

I* Must keep doing DeleteMin until an unknown vertex emerges */
T = O(|[E| log|V|) but requires |[E| DeleteMin with |E| space

% Other improvements: Pairing heap (Ch.12) and Fibonacci heap (Ch. 11)

7/11

§3 Shortest Path Algorithms
» Graphs with Negative Edge Costs

void WeightedNegative(Table T) _
{ I*Tis initialized by Figure 9.30 on p.303% 1 - OUVI X [E|)
Queue Q;
Vertex V, W;
Q = CreateQueue (NumVertex); MakeEmpty(Q);
Enqueue(S, Q); I* Enqueue the source vertex */
while (lIsEmpty(Q)){ /* each vertex can dequeue at most |V|
V = Dequeue(Q); times */
for (each W adjacentto V)
if (T[V]Dist+ Cvw<T[W]Dist){ [, longer once
T[W].Dist = T[V].Dist + Cvw; per edge */
T[W].Path = V;
if (W is not already in Q)
Enqueue(W, Q);
} I* end-if update */
} I* end-while */
DisposeQueue(Q); /* free memory */

I* negative-cost cycle will cause indefinite loop */ 7

8/11

> Acyclic Graphs §3 Shortest Path Algorithms

If the graph is acyclic, vertices may be selected in topological order
since when a vertex is selected, its distance can no longer be
lowered without any incoming edges from unknown nodes.

T = O(|[E| + |V|) and no priority queue is needed.

¢ Application: AOE (Activity On Edge) Networks
scheduling a project

a, ::= activity =<Vj> g Signals the completion of D

. EC[j]1\LC[j] ::= the earliest \ Index of vertex

latest completion time for node v, @

1 CPM (Critical Path Method) ~ -2tng Time

Slack Time @

9/11

§3 Shortest Path Algorithms
(Example) AOE network of a hypothetical project

‘% finish
18

(Dummy activ@

» Calculation of EC: Start from vO0, for any a. = <v, w>, we have
EC|w] = max{EC|v]+C, , }

(v,w)EE

> Calculation of LC: Start from the last vertex v8, for any a, =
<v, w>, we havé.C[v] = min {LC[w]- C, }

(v,w)EE

> of <v,w> = LC[w]- ECIv]-C, ,

» Critical Path ::= path consisting entirely of zero-slack edges.

10/11

§3 Shortest Path Algorithms
2. All-Pairs Shortest Path Problem

For all pairs of v; and v; (i # j), find the shortest path
between.

Method 1 Use single-source algorithm for |V| times.

T = O(|V|?*) — works fast on sparse graph.

Method 2 O(|V[?) algorithm given in Ch.10, works
faster on dense graphs.

11/11

Wiy

Laboratory Project 3

I\Tormal: Ambulance Dispatch
Hard: The 2nd-shortest Path

Due: Monday, November 2274, 2021 at 10:00pm

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

