
§3  Shortest Path Algorithms

Given a digraph G = ( V, E ), and a cost function c( e ) 

for e  E( G ).   The length of a path P from source to 

destination is                  (also called weighted path length).
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1.  Single-Source Shortest-Path Problem

Given as input a weighted graph, G = ( V, E ), and a 
distinguished vertex, s, find the shortest weighted path 
from s to every other vertex in G.
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Note: If there is no 
negative-cost cycle, 
the shortest path 
from s to s is 
defined to be zero.

Note: If there is no 
negative-cost cycle, 
the shortest path 
from s to s is 
defined to be zero.

1/11



§3  Shortest Path Algorithms

  Unweighted Shortest Paths
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 Sketch of the idea

Breadth-first 
search

 Implementation

Table[ i ].Dist ::= distance from s to vi  /* initialized to be  
except for s */

Table[ i ].Known ::= 1 if vi is checked; or 0 if not

Table[ i ].Path ::= for tracking the path   /* initialized to be 0 */
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§3  Shortest Path Algorithms

void Unweighted( Table T )
{   int  CurrDist;
    Vertex  V, W;
    for ( CurrDist = 0; CurrDist < NumVertex; CurrDist ++ ) {
        for ( each vertex V )

if ( !T[ V ].Known && T[ V ].Dist == CurrDist ) {
    T[ V ].Known = true;
    for ( each W adjacent to V )
        if ( T[ W ].Dist == Infinity ) {
T[ W ].Dist = CurrDist + 1;
T[ W ].Path = V;
        } /* end-if Dist == Infinity */
} /* end-if !Known && Dist == CurrDist */

    }  /* end-for CurrDist */
}

The worst case: v1v2v6v7 v3v4v5v9 v8

  T = O( |V|2 )

If V is unknown yet 
has Dist < Infinity, 
then Dist is either 

CurrDist or 
CurrDist+1.
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§3  Shortest Path Algorithms
 Improvement

void Unweighted( Table T )
{   /* T is initialized with the source vertex S given */
    Queue  Q;
    Vertex  V, W;
    Q = CreateQueue (NumVertex );  MakeEmpty( Q );
    Enqueue( S, Q ); /* Enqueue the source vertex */
    while ( !IsEmpty( Q ) ) {
        V = Dequeue( Q );
        T[ V ].Known = true; /* not really necessary */
        for ( each W adjacent to V )

if ( T[ W ].Dist == Infinity ) {
    T[ W ].Dist = T[ V ].Dist + 1;
    T[ W ].Path = V;
    Enqueue( W, Q );
} /* end-if Dist == Infinity */

    } /* end-while */
    DisposeQueue( Q ); /* free memory */
}
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T = O( |V| + |E| )

4/11



§3  Shortest Path Algorithms

  Dijkstra’s Algorithm (for weighted shortest paths)

Let S = { s and vi’s whose shortest paths have been found }

For any u  S,  define  distance [ u ] = minimal length of 
path { s  ( vi  S )  u }.  If the paths are generated in non-
decreasing order, then
  the shortest path must go through ONLY vi  S ;

    Why?  If it is not true, then
there must be a vertex w on this path

that is not in S.  Then ...

  u is chosen so that distance[ u ] = min{ wS | 
distance[ w ] }  (If u is not unique, then we may select 
any of them) ;  /* Greedy Method */

  if distance [ u1 ] < distance [ u2 ] and we add u1 into S, 
then distance [ u2 ] may change.  If so, a shorter path 
from s to u2 must go through u1 and distance’ [ u2 ] = 
distance [ u1 ] + length(< u1, u2>).
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§3  Shortest Path Algorithms

void Dijkstra( Table T )
{   /* T is initialized by Figure 9.30 on p.303 */
    Vertex  V, W;
    for ( ; ; ) {
        V = smallest unknown distance vertex;
        if ( V == NotAVertex )

break; 
        T[ V ].Known = true;
        for ( each W adjacent to V )

if ( !T[ W ].Known ) 
    if ( T[ V ].Dist + Cvw < T[ W ].Dist ) {
    Decrease( T[ W ].Dist  to
 T[ V ].Dist + Cvw );
T[ W ].Path = V;
    } /* end-if update W */

    } /* end-for( ; ; ) */
}
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/* not work for edge with negative cost */

Please read Figure 9.31 on p.304 for printing the path.

/* O( |V| ) */
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§3  Shortest Path Algorithms
 Implementation 1

V = smallest unknown distance vertex;
/* simply scan the table – O( |V| ) */

T = O( |V|2 + |E| ) Good if the graph is dense

 Implementation 2

V = smallest unknown distance vertex;
/* keep distances in a priority queue and call DeleteMin – O( log|V| ) */

Decrease( T[ W ].Dist  to  T[ V ].Dist + Cvw );

/* Method 1: DecreaseKey – O( log|V| ) */

T = O( |V| log|V| + |E| log|V| ) = O( |E| log|V| )

/* Method 2: insert W with updated Dist into the priority queue */

/* Must keep doing DeleteMin until an unknown vertex emerges */

Good if the 
graph is sparse

T = O( |E| log|V| ) but requires |E| DeleteMin with |E| space

 Other improvements: Pairing heap (Ch.12) and Fibonacci heap (Ch. 11)
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§3  Shortest Path Algorithms

  Graphs with Negative Edge Costs

Hey I have a good idea: 
           why don’t we simply add a constant

         to each edge and thus remove
negative edges?

Too simple, and naïve…              
Try this one out:
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void  WeightedNegative( Table T )
{   /* T is initialized by Figure 9.30 on p.303 */
    Queue  Q;
    Vertex  V, W;
    Q = CreateQueue (NumVertex );  MakeEmpty( Q );
    Enqueue( S, Q ); /* Enqueue the source vertex */
    while ( !IsEmpty( Q ) ) {
        V = Dequeue( Q );
        for ( each W adjacent to V )

if ( T[ V ].Dist + Cvw < T[ W ].Dist ) {
    T[ W ].Dist = T[ V ].Dist + Cvw;
    T[ W ].Path = V;
    if ( W is not already in Q )
        Enqueue( W, Q );
} /* end-if update */

    } /* end-while */
    DisposeQueue( Q ); /* free memory */
}

/* negative-cost cycle will cause indefinite loop */

/* no longer once 
per edge */

/* each vertex can dequeue at most |V| 
times */

T = O( |V|  |E| )
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§3  Shortest Path Algorithms
  Acyclic Graphs

If the graph is acyclic, vertices may be selected in topological order 
since when a vertex is selected, its distance can no longer be 
lowered without any incoming edges from unknown nodes.

T = O( |E| + |V| ) and no priority queue is needed.

 Application: AOE ( Activity On Edge ) Networks
                                                        ——  scheduling a project

vj
ai ::= activity Signals the completion of ai 

  EC[ j ] \ LC[ j ] ::= the earliest \ 
latest completion time for node vj

 CPM ( Critical Path Method )
Lasting Time

Slack Time

EC Time

LC Time

 Index of  vertex

9/11



§3  Shortest Path Algorithms〖 Example〗  AOE network of a hypothetical project

0
1

2

3

4

5

6

7
8

start

finish

a0=6

a1=4

a2=5

a3=1

a4=1

a5=2

a6=9

a7=7

a8=4

a9=2

a10=4

  Calculation of EC:  Start from v0, for any ai = <v, w>, we have
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  Calculation of LC:  Start from the last vertex v8, for any ai = 
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  Critical Path ::= path consisting entirely of zero-slack edges.
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§3  Shortest Path Algorithms

2.  All-Pairs Shortest Path Problem

For all pairs of vi and vj ( i  j ), find the shortest path 
between.

Method 1  Use  single-source algorithm  for |V| times.

T = O( |V|3 ) – works fast on sparse graph.

Method 2  O( |V|3 ) algorithm given in Ch.10, works 
faster on dense graphs.
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Laboratory Project 3

Normal: Ambulance Dispatch
Hard: The 2nd-shortest Path

Due:  Monday, November 22nd, 2021 at 10:00pm 
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