§3 Shortest Path Algorithms

Given a digraph G = (V, E), and a cost function c(e) for $e \in E(G)$. The length of a path P from source to destination is $\sum_{e_i \subseteq P} c(e_i)$ (also called weighted path length).

1. Single-Source Shortest-Path Problem

Given as input a weighted graph, G = (V, E), and a distinguished vertex, s, find the shortest weighted path from s to every other vertex in G.

 v_1 v_2 v_2 v_3 v_4 v_4 v_5 v_5 v_4 v_6 v_6 v_7 v_7 v_8 v_8 v_4 v_7 v_8 v_8

Negative-cost

Note: If there is no negative-cost cycle, the shortest path from s to s is defined to be zero.

Unweighted Shortest Paths

Sketch of the idea

- $0: \ \, \square \ \, v_3$
- 1: v_1 and v_6
- 2: v_2 and v_4
- $\mathbf{3:} \ \square \quad \mathbf{v}_5 \text{ and } \mathbf{v}_7$

Breadth-first search

Implementation

```
Table[ i ].Dist ::= distance from s to v_i /* initialized to be \infty except for s */
```

Table[i].Known ::= 1 if v_i is checked; or 0 if not

Table[i].Path ::= for tracking the path /* initialized to be 0 */

```
void Unweighted( Table T )
{ int CurrDist;
  Vertex V, W;
  for ( CurrDist = 0; CurrDist < NumVertex; CurrDist ++ ) {</pre>
     for ( each vertex V )
         if ( !T[ V ].Known && T[ V ].Dist == CurrDist ) {
           T[ V ].Known = true,
           for ( each W adjacent to )
                                                     If V is unknown yet
              if ( T[ W ].Dist == Infinity ) {
                                                      has Dist < Infinity,
         T[W].Dist = CurrDist + 1;
                                                      then Dist is either
         T[W].Path = V;
                                                         CurrDist or
              } /* end-if Dist == Infinity */
                                                         CurrDist+1.
         } /* end-if !Known && Dist == CurrDist
  } /* end-for CurrDist */
                                     T = O(|V|^2)
```

The worst case: $v_9 \rightarrow v_8 \rightarrow v_7 \rightarrow v_6 \rightarrow v_5 \rightarrow v_4 \rightarrow v_3 \rightarrow v_2 \rightarrow v_1$

Improvement

```
void Unweighted( Table T )
{ /* T is initialized with the source vertex S given */
  Queue Q;
  Vertex V, W;
  Q = CreateQueue (NumVertex ); MakeEmpty(Q);
  Enqueue(S, Q); /* Enqueue the source vertex */
  while (!IsEmpty(Q)) {
    V = Dequeue(Q);
    T[ V ].Known = true; /* not really necessary */
    for ( each W adjacent to V )
        if ( T[ W ].Dist == Infinity ) {
          T[W].Dist = T[V].Dist + 1;
          T[W].Path = V;
          Enqueue(W, Q);
        } /* end-if Dist == Infinity */
  } /* end-while */
  DisposeQueue(Q); /* free memory */
```


$$T = O(|V| + |E|)$$

Dijkstra's Algorithm (for weighted shortest paths)

Let $S = \{ s \text{ and } v_i \text{'s whose shortest paths have been found } \}$ For any $u \notin S$, define distance $[u] = \text{minimal length of path } \{ s \rightarrow (v_i \in S) \rightarrow u \}$. If the paths are generated in non-decreasing order, then

- ① the shortest path must go through $ONLY v_i \in S$;

distance[w.] } (If u is not unique, then we may select why? If it is not true, then we may select any of them); /* Greedy Method */ there must be a vertex w on this path

if distance [u_1] may change. If so, a shorter path from s to u_2 must go through u_1 and distance [u_2] = distance [u_1] + length($\langle u_1, u_2 \rangle$).

§3 Shortest Path Algorithms

Please read Figure 9.31 on p.304 for printing the path.

Implementation 1

V = smallest unknown distance vertex;

 I^* simply scan the table – O(|V|) */

$$T = O(|V|^2 + |E|)$$

Good if the graph is dense

Implementation 2

V = smallest unknown distance vertex;

/* keep distances in a priority queue and call DeleteMin – O(log|V|) */

Decrease(T[W].Dist to T[V].Dist + Cvw);

/* Method 1: DecreaseKey - O(log|V|) */

 $T = O(|V| \log |V| + |E| \log |V|) = O(|E| \log |V|)$

Good if the graph is sparse

/* Method 2: insert W with updated Dist into the priority queue */

/* Must keep doing DeleteMin until an unknown vertex emerges */

 $T = O(|E| \log |V|)$ but requires |E| DeleteMin with |E| space

Other improvements: Pairing heap (Ch.12) and Fibonacci heap (Ch. 11)

Graphs with Negative Edge Costs

```
void WeightedNegative( Table T )
                                                  T = O(|V| \times |E|)
{ /* T is initialized by Figure 9.30 on p.303 */
  Queue Q;
  Vertex V, W;
  Q = CreateQueue (NumVertex ); MakeEmpty(Q);
  Enqueue(S, Q); /* Enqueue the source vertex */
  while (!IsEmpty(Q)) { /* each vertex can dequeue at most |V|
    V = Dequeue(Q);
                           times */
    for ( each W adjacent to V )
        if ( T[ V ].Dist + Cvw < T[ W ].Dist ) {</pre>
                                                /* no longer once
          T[W].Dist = T[V].Dist + Cvw;
                                                per edge */
          T[W].Path = V;
          if (W is not already in Q)
             Enqueue(W, Q);
        } /* end-if update */
  } /* end-while */
  DisposeQueue(Q); /* free memory */
   /* negative-cost cycle will cause indefinite loop */
```

Acyclic Graphs

If the graph is acyclic, vertices may be selected in topological order since when a vertex is selected, its distance can no longer be lowered without any incoming edges from unknown nodes.

T = O(|E| + |V|) and no priority queue is needed.

Application: AOE (Activity On Edge) Networks—— scheduling a project

 $a_i ::=$ activity Signals the completion of a_i

- **EC**[j] \ LC[j] ::= the earliest \ latest completion time for node v_j
- □ CPM (Critical Path Method)

[Example] AOE network of a hypothetical project

- > Calculation of EC: Start from v0, for any $a_i = \langle v, w \rangle$, we have $EC[w] = \max_{(v,w) \in E} \{EC[v] + C_{v,w}\}$
- > Calculation of LC: Start from the last vertex v8, for any $a_i = \langle v, w \rangle$, we hav $\mathcal{L}C[v] = \min_{(v,w) \in E} \{LC[w] C_{v,w} \}$
- > Slack Time of $\langle v,w \rangle = LC[w] EC[v] C_{v,w}$
- > Critical Path ::= path consisting entirely of zero-slack edges.

2. All-Pairs Shortest Path Problem

For all pairs of v_i and v_j ($i \neq j$), find the shortest path between.

- Method 1 Use single-source algorithm for |V| times. $T = O(|V|^3)$ – works fast on sparse graph.
- Method 2 $O(|V|^3)$ algorithm given in Ch.10, works faster on dense graphs.

Laboratory Project 3

Normal: Ambulance Dispatch

Hard: The 2nd-shortest Path

Due: Monday, November 22nd, 2021 at 10:00pm