84 Network Flow Problems

(Example) Consider the following network of pipes:

Note: Total coming in (v)
= Total going out (v)
wherev & {s,t }

- Determine the maximum
amount of flow that can

pass from s to t.

1/9

2/9

84 Network Flow Problems

1. A Simple Algorithm

H=— b a) —(_’ :)
3| |2 | |
c) 4 >Nd N d
NN/ /5
O
G Flow G, Residual G,

Step 1: Find any paths)tinG, ; Step 4: If (there is a path s — t

Step 2: Take the minimum on inG,)
this path as the amo Goto Step 1;

flow and add to @G, ;

Step 3: Update G, and remove the
0 flow edges;

End.

84 Network Flow Problems

1 Uh-oh...
a b Seems we cannot be
31 12 greedy at this point.
4

3/9

84 Network Flow Problems
2. A Solution - allow the algorithm to undo its decisions

T For each edge (v, w) with flow f, in G, add an edge (w, v)
with flow f, in G, .

a b
31 12
c) 4 d
N\
G Flow G, Residual G,

(Proposition)| If the edge capabilities
are rational numbers, this algorithm always
terminate with a maximum flow.

Note: The algorithm
works for G with
cycles as well.

4/9

84 Network Flow Problems
3. Analysis (If the capacities are all integers)

) An augmenting path can be found by an unweighted shortest
path algorithm.

T=0(f-|E|l) where f is the maximum flow.

[Always choose the augmenting path that allows the largest
increase in flow. /* modify Dijkstra’s algorithm */

T=T *T

augmentation find a path

= O(|E| log cap,,,) * O(|E| log |V])
= O(|E|* log |V]) if cap, . is a small integer.

5/9

84 Network Flow Problems

[Always choose the augmenting path that has the least number of edges.

T=T

augmentation

*T

find a path
=O(|E|) * O(|E|-|V]) I*unweighted shortest path algorithm */

= O(|E|*IV])

Note:

> If every v & { s, t } has either a single incoming edge of capacity
1 or a single outgoing edge of capacity 1, then time bound is
reduced to O(|E| |V]*?). | |

» The min-cost flow problem is to find, among all maximum flows,
the one flow of minimum cost provided that each edge has a cost
per unit of flow.

6/9

§5 Minimum Spanning Tree

[Definition] A spanning tree of a graph G is a tree
which consists of V(G) and a subset of E(G)

K Example] A complete graph and three of its spanning

P A

Note:

» The minimum spanning tree is a tree since it is acyclic -- the
number of edges is [V| - 1.

» Tt is minimum for the total cost of edges is minimized.
> It is spanning because it covers every vertex.
» A minimum spanning tree exists iff G is connected.

» Adding a non-tree edge to a spanning tree, we obtain a cycle.

7/9

§5 Minimum Spanning Tree

BE 0 | oA £ Make the best decision for each stage, under the
' following constrains :

(1) we must use only edges within the graph;
(2) we must use exactly |V| -1 edges;
(3) we may not use edges that would produce a cycle.

NS
< \f

1. Prim’s Algorithm — grow a tree

I* very similar to Dijkstra’s algorithm */

8/9

§5 Minimum Spanning Tree
2. Kruskal’s Algorithm — maintain a forest

void Kruskal (Graph G) T = O(|E| log |E|)
{ T={};
while (T contains less than |V| -1 edges
&& E is not empty) {
choose a least cost edge (v, w) fromE ; [+ peleteMin */
delete (v, w) from E ;
if ((v, w) does not create acycleinT)
add (v, w)toT; /* Union | Find */
else
discard (v, w) ;
}
if (T contains fewer than |V| -1 edges)
Error (“No spanning tree”) ;

7

A more detailed pseudocode is given by Figure 9.58 on p.321 ﬂ

9/9

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

