
§4  Network Flow Problems

〖 Example〗  Consider the following network of pipes:
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Note:  Total coming in (v) 

             Total going out (v)

            where v  { s, t }

Note:  Total coming in (v) 

             Total going out (v)

            where v  { s, t }

Determine the maximum 
amount of flow that can 
pass from s to t.
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§4  Network Flow Problems
1.  A Simple Algorithm
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Step 1:  Find any path s  t in Gr ;

augmenting path

Step 2:  Take the minimum edge on 
this path as the amount of 
flow and add to Gf ;

Step 3:  Update Gr and remove the 
0 flow edges;

Step 4:  If (there is a path s  t 
in Gr )

                    Goto Step 1;
               Else
                     End.
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§4  Network Flow Problems
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                  It is simple indeed.  
          But I bet that you will point out 

some problems here…

You are right!
What if I pick up the path

s  a  d  t
first?

    Uh-oh… 
          Seems we cannot be 

    greedy at this point.
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§4  Network Flow Problems
2.  A Solution – allow the algorithm to undo its decisions

For each edge ( v, w ) with flow fv, w in Gf , add an edge ( w, v ) 
with flow fv, w in  Gr .
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〖 Proposition〗  If the edge capabilities 
are rational numbers, this algorithm always 
terminate with a maximum flow.

Note:  The algorithm 
works for G with 
cycles as well.

Note:  The algorithm 
works for G with 
cycles as well.

4/9



§4  Network Flow Problems
3.  Analysis ( If the capacities are all integers )

 An augmenting path can be found by an unweighted shortest 
path algorithm.

T = O(               )  where  f  is the maximum flow.f · |E|
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 Always choose the augmenting path that allows the largest 
increase in flow. /* modify Dijkstra’s algorithm */

T = Taugmentation * Tfind a path

= O( |E| log capmax ) * O( |E| log |V| )

= O( |E|2 log |V| ) if capmax is a small integer.
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§4  Network Flow Problems

 Always choose the augmenting path that has the least number of edges.

T = Taugmentation * Tfind a path

= O( |E| ) * O( |E| · |V| )

= O( |E|2 |V| )

/* unweighted shortest path algorithm */

Note:  
 If every v  { s, t } has either a single incoming edge of capacity 

1 or a single outgoing edge of capacity 1, then time bound is 
reduced to O( |E| |V|1/2 ).

 The min-cost flow problem is to find, among all maximum flows, 
the one flow of minimum cost provided that each edge has a cost 
per unit of flow.

Note:  
 If every v  { s, t } has either a single incoming edge of capacity 

1 or a single outgoing edge of capacity 1, then time bound is 
reduced to O( |E| |V|1/2 ).

 The min-cost flow problem is to find, among all maximum flows, 
the one flow of minimum cost provided that each edge has a cost 
per unit of flow.
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§5  Minimum Spanning Tree
【 Definition 】 A spanning tree of a graph G is a tree 

which consists of V( G ) and a subset of E( G )

〖 Example  〗 A complete graph and three of its spanning 
trees

Note:  
 The minimum spanning tree is a tree since it is acyclic -- the 

number of edges is |V| – 1.
 It is minimum for the total cost of edges is minimized.
 It is spanning because it covers every vertex.
 A minimum spanning tree exists iff G is connected.
 Adding a non-tree edge to a spanning tree, we obtain a cycle.

Note:  
 The minimum spanning tree is a tree since it is acyclic -- the 

number of edges is |V| – 1.
 It is minimum for the total cost of edges is minimized.
 It is spanning because it covers every vertex.
 A minimum spanning tree exists iff G is connected.
 Adding a non-tree edge to a spanning tree, we obtain a cycle.
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§5  Minimum Spanning Tree

Greedy MethodGreedy MethodMake the best decision for each stage, under the 
following constrains :

(1)  we must use only edges within the graph;

(2)  we must use exactly |V| 1 edges;

(3)  we may not use edges that would produce a cycle.

1.  Prim’s Algorithm – grow a tree
/* very similar to Dijkstra’s algorithm */
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§5  Minimum Spanning Tree

2.  Kruskal’s Algorithm – maintain a forest

void Kruskal ( Graph G )
{   T = { } ;
    while  ( T contains less than |V| 1 edges 
                   && E is not empty ) {
        choose a least cost edge (v, w) from E ;
        delete (v, w) from E ;
        if  ( (v, w) does not create a cycle in T )     

add (v, w) to T ;
        else     

discard (v, w) ;
    }
    if  ( T contains fewer than |V| 1 edges )
        Error ( “No spanning tree” ) ;
}

/* DeleteMin */

/* Union / Find */

A more detailed pseudocode is given by Figure 9.58 on p.321

T = O( |E| log |E| )
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