
§4 Network Flow Problems

〖 Example〗 Consider the following network of pipes:

s

dc

ba

t

3

3

3

2

2

2

1

4

source

sink

Note: Total coming in (v)

  Total going out (v)

 where v  { s, t }

Note: Total coming in (v)

  Total going out (v)

 where v  { s, t }

Determine the maximum
amount of flow that can
pass from s to t.

1/9

§4 Network Flow Problems
1. A Simple Algorithm

s

dc

ba

t

3

3

3

2

2

2

1

4

G

s

dc

ba

t
Flow Gf

s

dc

ba

t
Residual Gr

Step 1: Find any path s  t in Gr ;

augmenting path

Step 2: Take the minimum edge on
this path as the amount of
flow and add to Gf ;

Step 3: Update Gr and remove the
0 flow edges;

Step 4: If (there is a path s  t
in Gr)

 Goto Step 1;
 Else
 End.

2/9

§4 Network Flow Problems

s

dc

ba

t

3

3

3

2

2

2

1

4

G

 It is simple indeed.
 But I bet that you will point out

some problems here…

You are right!
What if I pick up the path

s  a  d  t
first?

 Uh-oh…
 Seems we cannot be

 greedy at this point.

3/9

§4 Network Flow Problems
2. A Solution – allow the algorithm to undo its decisions

For each edge (v, w) with flow fv, w in Gf , add an edge (w, v)
with flow fv, w in Gr .

s

dc

ba

t
Flow Gf

s

dc

ba

t

3

3

3

2

2

2

1

4

G

s

dc

ba

t
Residual Gr

3

3

3

2

2

2

1

4

3

3

3

3

3
1

3

2

222

2

2

21

3
2

2

1

〖 Proposition〗 If the edge capabilities
are rational numbers, this algorithm always
terminate with a maximum flow.

Note: The algorithm
works for G with
cycles as well.

Note: The algorithm
works for G with
cycles as well.

4/9

§4 Network Flow Problems
3. Analysis (If the capacities are all integers)

 An augmenting path can be found by an unweighted shortest
path algorithm.

T = O() where f is the maximum flow.f · |E|

s

t

a b

1 000 000 1 000 000

1 000 000 1 000 000

1

 Always choose the augmenting path that allows the largest
increase in flow. /* modify Dijkstra’s algorithm */

T = Taugmentation * Tfind a path

= O(|E| log capmax) * O(|E| log |V|)

= O(|E|2 log |V|) if capmax is a small integer.

5/9

§4 Network Flow Problems

 Always choose the augmenting path that has the least number of edges.

T = Taugmentation * Tfind a path

= O(|E|) * O(|E| · |V|)

= O(|E|2 |V|)

/* unweighted shortest path algorithm */

Note:
 If every v  { s, t } has either a single incoming edge of capacity

1 or a single outgoing edge of capacity 1, then time bound is
reduced to O(|E| |V|1/2).

 The min-cost flow problem is to find, among all maximum flows,
the one flow of minimum cost provided that each edge has a cost
per unit of flow.

Note:
 If every v  { s, t } has either a single incoming edge of capacity

1 or a single outgoing edge of capacity 1, then time bound is
reduced to O(|E| |V|1/2).

 The min-cost flow problem is to find, among all maximum flows,
the one flow of minimum cost provided that each edge has a cost
per unit of flow.

6/9

§5 Minimum Spanning Tree
【 Definition 】 A spanning tree of a graph G is a tree

which consists of V(G) and a subset of E(G)

〖 Example 〗 A complete graph and three of its spanning
trees

Note:
 The minimum spanning tree is a tree since it is acyclic -- the

number of edges is |V| – 1.
 It is minimum for the total cost of edges is minimized.
 It is spanning because it covers every vertex.
 A minimum spanning tree exists iff G is connected.
 Adding a non-tree edge to a spanning tree, we obtain a cycle.

Note:
 The minimum spanning tree is a tree since it is acyclic -- the

number of edges is |V| – 1.
 It is minimum for the total cost of edges is minimized.
 It is spanning because it covers every vertex.
 A minimum spanning tree exists iff G is connected.
 Adding a non-tree edge to a spanning tree, we obtain a cycle.

7/9

§5 Minimum Spanning Tree

Greedy MethodGreedy MethodMake the best decision for each stage, under the
following constrains :

(1) we must use only edges within the graph;

(2) we must use exactly |V| 1 edges;

(3) we may not use edges that would produce a cycle.

1. Prim’s Algorithm – grow a tree
/* very similar to Dijkstra’s algorithm */

v1 v2

v6 v7

v3 v4 v5

2

4

2

1 3 10

7

5
8 4

6
1

8/9

§5 Minimum Spanning Tree

2. Kruskal’s Algorithm – maintain a forest

void Kruskal (Graph G)
{ T = { } ;
 while (T contains less than |V| 1 edges
 && E is not empty) {
 choose a least cost edge (v, w) from E ;
 delete (v, w) from E ;
 if ((v, w) does not create a cycle in T)

add (v, w) to T ;
 else

discard (v, w) ;
 }
 if (T contains fewer than |V| 1 edges)
 Error (“No spanning tree”) ;
}

/* DeleteMin */

/* Union / Find */

A more detailed pseudocode is given by Figure 9.58 on p.321

T = O(|E| log |E|)

9/9

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

