
§7  Quicksort -- the fastest known sorting algorithm in practice

1. The Algorithm

void Quicksort ( ElementType A[ ], int N )
{
     if ( N < 2 )  return;
     pivot = pick any element in A[ ]; 
     Partition S = { A[ ] \ pivot } into two disjoint sets:

A1={ aS | a  pivot } and A2={ aS | a  pivot };
     A = Quicksort ( A1, N1)  { pivot }  Quicksort ( A2, N2);
}
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The best case T(N) = O(                   )N  log N

The pivot is placed at 
the right place once 

and for all.
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§7  Quicksort 

2. Picking the Pivot

 A Wrong Way: Pivot = A[ 0 ]

The worst case: A[ ] is presorted – quicksort will take 
O( N2 ) time to do nothing  

 A Safe Maneuver: Pivot = random select from A[ ]

  random number generation is expensive

 Median-of-Three Partitioning:

Pivot = median ( left, center, right )

Eliminates the bad case for sorted input and actually 
reduces the running time by about 5%.
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§7  Quicksort 
3.  Partitioning Strategy
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         Not too difficult if we carefully
implement it…What if there is a

key == pivot?

         How about stop i and j both
and then swap?

What will happen to
the sequence:
1, 1, 1, …, 1 ?

           Uh-oh, there will be many dummy swaps…
But hey!  At least the sequence will be

partitioned into two equal-sized
subsequences.

Good point!
How about the other option –

that neither i nor j stops?

No swap… but then T( N ) = …Then T( N ) = O( N2 ).
So we’d better stop both i  and j

and take some extra swaps.
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§7  Quicksort 
4.  Small Arrays

Problem: Quicksort is slower than insertion sort for small 
N (  20 ).

Solution: Cutoff when N gets small ( e.g. N = 10 ) and use 
other efficient algorithms (such as insertion sort).

5.  Implementation

void  Quicksort( ElementType A[ ], int N ) 
{ 

Qsort( A, 0, N - 1 ); 
/* A: the array */
/* 0: Left index */
/* N – 1: Right index */

}
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§7  Quicksort 

/* Return median of Left, Center, and Right */ 
/* Order these and hide the pivot */ 

ElementType Median3( ElementType A[ ], int Left, int Right ) 
{ 
    int  Center = ( Left + Right ) / 2; 
    if ( A[ Left ] > A[ Center ] ) 
        Swap( &A[ Left ], &A[ Center ] ); 
    if ( A[ Left ] > A[ Right ] ) 
        Swap( &A[ Left ], &A[ Right ] ); 
    if ( A[ Center ] > A[ Right ] ) 
        Swap( &A[ Center ], &A[ Right ] ); 
    /* Invariant: A[ Left ] <= A[ Center ] <= A[ Right ] */ 
    Swap( &A[ Center ], &A[ Right - 1 ] ); /* Hide pivot */ 
    /* only need to sort A[ Left + 1 ] … A[ Right – 2 ] */
    return  A[ Right - 1 ];  /* Return pivot */ 
}
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§7  Quicksort 

void  Qsort( ElementType A[ ], int Left, int Right ) 
{   int  i,  j; 
    ElementType  Pivot; 
    if ( Left + Cutoff <= Right ) {  /* if the sequence is not too short */
        Pivot = Median3( A, Left, Right );  /* select pivot */
        i = Left;     j = Right – 1;  /* why not set Left+1 and Right-2? */
        for( ; ; ) { 

 while ( A[ + +i ] < Pivot ) { }  /* scan from left */
 while ( A[ – –j ] > Pivot ) { }  /* scan from right */
 if ( i < j ) 
    Swap( &A[ i ], &A[ j ] );  /* adjust partition */
 else     break;  /* partition done */

        } 
        Swap( &A[ i ], &A[ Right - 1 ] ); /* restore pivot */ 
        Qsort( A, Left, i - 1 );      /* recursively sort left part */
        Qsort( A, i + 1, Right );   /* recursively sort right part */
    }  /* end if - the sequence is long */
    else /* do an insertion sort on the short subarray */ 
        InsertionSort( A + Left, Right - Left + 1 );
}
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§7  Quicksort 6.  Analysis
T( N ) = T( i ) + T( N – i – 1 ) + c N

 The Worst Case:
T( N ) = T( N – 1 ) + c N T( N ) = O( N2 )

 The Best Case:  [ ... ... ]   [ ... ... ] 

T( N ) = 2T( N / 2 ) + c N T( N ) = O( N log N )

 The Average Case:
Assume the average value of T( i ) for any i  is 
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〖 Example〗 Given a list of N elements and an integer k.  
Find the kth largest element.

Read Figure 6.16 on p.214 
for the 5th algorithm on 
solving this problem.
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§8  Sorting Large Structures

Problem: Swapping large structures can be very much expensive.

Solution: Add a pointer field to the structure and swap pointers instead 
– indirect sorting.  Physically rearrange the structures at last 
if it is really necessary.
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list
key

table

[0]

d
4

[1]

b
1

[2]

f
3

[3]

c
0

[4]

a
5

[5]

e
2

temp = d
current = 0
next = 4

a
0

4
5

e
4

5
2

f
5

2
3

c
2

3d
3

In the worst case there are       ?        cycles and requires       ?       
record moves.

 N / 2  3N / 2

T = O( m N ) where m is the size of a structure.

〖 Example〗 Table Sort
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§9  A General Lower Bound for Sorting
【 Theorem 】 Any algorithm that sorts by comparisons only 

must have a worst case computing time of ( N log N ).

Proof: K0  K1
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Decision tree for insertion sort on R0, R1, and R2

When sorting N distinct 

elements, there are N! different 
possible results.

Thus any decision tree must 

have at least N! leaves.

If the height of the tree 

is k, then N!  2k1 (# of 
leaves in a complete 

binary tree)

   k  log(N!) + 1

Since  N!  (N/2)N/2 and log2 N!  (N/2)log2(N/2) =  ( N log2 
N )Therefore  T(N) = k  c  N log2 N .
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§10  Bucket Sort and Radix Sort

 Bucket Sort

〖 Example  〗 Suppose that we have N students, each has a 
grade record in the range 0 to 100 (thus there are M = 101 
possible distinct grades).  How to sort them according to their 
grades in linear time?

count
0 1 10088 Algorithm

{
    initialize count[ ];
    while (read in a student’s record)
        insert to list count[stdnt.grade];
    for (i=0; i<M; i++) {
        if (count[i])
            output list count[i];
    }
}

T(N, M) = O( M+N )

What if 
M >> N ?
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〖 Example  〗 Given N = 10 integers in the range 0 to 999 ( M = 
1000 ) Is it possible to sort them in linear time?

 Radix Sort
Input:  64, 8, 216, 512, 27, 729, 0, 1, 343, 125

0Bucket 1 2 3 4 5 6 7 8 9

Sort according to the Least Significant Digit first.

0Pass 1 1 512 343 64 125 216 27 8 729

Pass 2
0
1

512 343 64125
216 27

8 729

Pass 3

0
1
8

512216125

27

729343

64

Output:  0, 1, 8, 27, 64, 125, 216, 343, 512, 729

T=O(P(N+B)) 
where P is the 
number of 
passes, N is the 
number of 
elements to sort, 
and B is the 
number of 
buckets.

T=O(P(N+B)) 
where P is the 
number of 
passes, N is the 
number of 
elements to sort, 
and B is the 
number of 
buckets.

What if we sort 
according to the Most 
Significant Digit first?

§10  Bucket Sort and Radix Sort
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  Ki 
j ::= the j-th key of record Ri

  Ki 
0 ::= the most significant key of record Ri

Suppose that the record Ri  has r  keys.

  Ki 
r1 ::= the least significant key of record Ri

  A list of records R0, ..., Rn1 is lexically sorted  with respect 
to the keys K 0, K 1, ..., K r1  iff
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That is,  Ki 
0 = Ki+1 

0,  ... ,  Ki 
l = Ki+1 

l,  Ki 
l+1 < Ki+1 

l+1   for some  
l < r  1.〖 Example〗  A deck of cards sorted on 2 keys
K 0 [Suit]   <    <    <    
K 1 [Face value] 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < 10 < J < Q < K < A

Sorting result : 2   ...   A  2  ...  A  2  ...  A  2   ...  A  

§10  Bucket Sort and Radix Sort
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 MSD ( Most Significant Digit ) Sort

  Sort on K 0:  for example, create 4 buckets for the suits
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  Sort each bucket independently (using any sorting 

technique)
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§10  Bucket Sort and Radix Sort
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§10  Bucket Sort and Radix Sort
  LSD ( Least Significant Digit ) Sort

  Sort on K 1:  for example, create 13 buckets for the face 
values
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Question:  
Is LSD always faster than MSD?
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Bonus 
Problem 2 

 Stack of Hats

(2 points)Due:  Tuesday, January 4th, 2022 at 10:00pm

The problem can be found and submitted at
 https://pintia.cn/
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