87 QlliCkSOl“t -- the fastest known sorting algorithm in practice
1. The Algorithm

void Quicksort (ElementType A[], int N)
{

if(N<2) return;
U pivot = pick any element in A[];
U Partition S = { A[]\ pivot } into two disjoint sets:
Al={aceS | a < pivot } and A2={ acS | a = pivot };
A = Quicksort (A1, N1) U { pivot } U Quicksort (A2, N2);

}
The best case T(N) = O(N logk 7

The pivot is placed at
the right place once
and for all.

6575 8192

1/14

87 Quicksort
2. Picking the Pivot
lA Wrong Way: Pivot=A[0]
The worst case: A[] is presorted — quicksort will take

O(N?) time to do nothing @

[0 A Safe Maneuver: Pivot = random select from A[]

® random number generation is expensive

[Median-of-Three Partitioning:
Pivot = median (left, center, right)

Eliminates the bad case for sorted input and actually
reduces the running time by about 5%.

2/14

87 Quicksort
3. Partitioning Strategy

<
> < < > < <
2 1 4 o) 0 3

Then T(N) = O(N?).
So we’d better stop both i and j
and take some extra swaps.

~

3/14

87 Quicksort
4. Small Arrays

Problem: Quicksort is slower than insertion sort for small
N(<20).

Solution: Cutoff when N gets small (e.g. N = 10) and use
other efficient algorithms (such as insertion sort).

5. Implementation

void Quicksort(ElementType A[], int N)
{

Qsort(A,0,N-1);

I*A: the array *

I* 0: Left index *[

I*N - 1: Right index */
}

4/14

87 Quicksort

I* Return median of Left, Center, and Right */
I* Order these and hide the pivot */

ElementType Median3(ElementType A[], int Left, int Right)
{
int Center = (Left + Right)] 2;
if (A[Left] > A[Center])
Swap(&A[Left], &A[Center]);
if (A[Left]> A[Right])
Swap(&A[Left], &A[Right]);
if (A[Center] > A[Right])
Swap(&A[Center], &A[Right]);
I* Invariant: A[Left] <= A[Center] <= A[Right] */
Swap(&A[Center], &A[Right - 1]); /* Hide pivot */
I* only need to sort A[Left+ 1] ... A[Right — 2] */
return A[Right-1]; /* Return pivot */

5/14

6/14

87 Quicksort

void Qsort(ElementType A[], int Left, int Right)
{ inti, j;
ElementType Pivot;
if (Left + Cutoff <= Right) { /* if the sequence is not too short */
Pivot = Median3(A, Left, Right); /* select pivot */
i=Left; j=Right-1; /*why not set Left+1 and Right-2? */
for(; ;) {
while (A[+ +i] < Pivot) {} /* scan from left */
while (A[- —=j] > Pivot) {} I* scan from right */
if(i<j)
Swap(&A[i], &A[j]); [* adjust partition */
else break; [* partition done */
}
Swap(&A[i], &A[Right - 1]); /* restore pivot */
Qsort(A, Left,i-1); I* recursively sort left part */
Qsort(A, i + 1, Right); /* recursively sort right part */
} I* end if - the sequence is long */
else /I* do an insertion sort on the short subarray */
InsertionSort(A + Left, Right - Left + 1);

6 Analysis §7 Quicksort

T(N)=T(i)+T(N-i-1)+cN

[l The Worst Case:
T(N)=T(N-1)+cN w=sp T(N)=O(N?)

T(N)=2T(N/2)+c? ag N)
Read Figure 6.16 on p.214

for the 5t algorithm on
solving this problem.

T(N)=O(Nlog N)

ist of N elements and an integer k.
Find the kth largest element.

7/14

88 Sorting Large Structures

Problem: Swapping large structures can be very much expensive.

Solution: Add a pointer field to the structure and swap pointers instead
— indirect sorting. Physically rearrange the structures at last
if it is really necessary.

KExample] Table Sort list [01 [1] [2] [31] [4] | [5]

key a|e|
The sorted list is table|@|®|@|@|® @_
list [table[0]], list [table[1]], , list [table[n-1]]

Note: Every permutation is made up of disjoint cycles.

list [[o]|[1]][2]][3]][4]]I[5] temp=d
key|[a|b|c|d]e|f current = 3
table] 0 | 112]13(4]5 next = 3

In the worst case there are | N /2] cycles and requires | 3N/ 2]
record moves.

T = O(m N) where m is the size of a structure.

8/14

89 A General Lower Bound for Sorting

[Theorem] Any algorithm that sorts by comparisons only
must have a worst case computing time of Q(N log N).

Proof: When sorting N distinct

elements, there are N! different
possible results.
Thus any decision tree must

have at least N! leaves.

If the height of the tree
is k, then N! < 21 (# of
leaves in a complete
binary tree)

= k> log(N!) + 1

Decision tree for insertion sort on R, R, and R,
Since N! = (N/2)V2 and log, N! = (N/2)log,(N/2) = © (N log,
Mprefore T(N)=k>c - Nlog, N . i

9/14

810 Bucket Sort and Radix Sort

“{Bucket Sort

(Example)

Suppose that we have N students, each has a

grade record in the range 0 to 100 (thus there are M = 101
possible distinct grades). How to sort them according to their
grades in time?

count

10/14

w

What if
M>>N?

Algorithm

{

Initialize count|];
while (read in a student’s record)
insert to list count[stdnt.grade];
for (i=0; i<M; i++) {
if (count[i])
output list count[i];

T(N, M) = O(M+N) 7

8§10 Bucket Sort and Radix Sort
(Example) Given N =10 integers in the range 0 to 999 (M =

1000) Is it possible to sort them in time?
. What if we sort
[Radix Sort according to the Most
Input: 64, 8, 216, 512, 27, 729, 0, 1, 343, 125 ignificant Digit first?

Sort according to the I .east Significant Digit first.

Bucket | 0 1 2 3 4 5 6 7 8 9
Pass 1 512|343 | 64 | 125|216 | 2 72 T=0O(P(N+B))
0 |512] 125 343 64 WhEl: P 1sf the
Pass2 | 1 |216| 27 number 0.
passes, N is the
¢) - number of
0 |125|216 | 343 512 729 elements to sort,
1 and B is the
Pass3 | g number of
27 buckets.
64 -

Output: 0, 1, 8, 27, 64, 125, 216, 343, 512, 729

11/14

§10 Bucket Sort and Radix Sort
Suppose that the record R, has r keys.
\. K ::= the j-th key of record R,
N\ K.’ ::= the most significant key of record R,
N\ K.! ::= the least significant key of record R,

. A list of records R, ..., R__, is lexically sorted with respect
to the keys K, K1, ..., K™! iff
(Kio’Kil’ K 1) (K1+1’ 1+1’ K1r+11 , 0<i<n-1.

Thatis, K°=K_,° ..., K'=K,,, K" <K,

| i+1

1 for some

I<r-1.
(Example) A deck of cards sorted on 2 keys
K °[Suit] b <e<V¥<o

K'[Facevalue] 2<3<4<5<6<7<8<9<10<J<Q<K<A
Sorting result: 2d ... Ad 2¢ ... Ao 29 .. AV 26 .. Ad

12/14

8§10 Bucket Sort and Radix Sort
[MSD (Most Significant Digit) Sort

@® Sort on K°: for example, create 4 buckets for the suits

* | * 'Y N *
B4 *o AN v

@ Sort each bucket independently (using any sorting

technique)
®Vieod

13/14

8§10 Bucket Sort and Radix Sort
[LSD (Least Significant Digit) Sort

® Sort on K': for example, create 13 buckets for the face

values
&b < (XX *
oo, Il oo
P Tl AL :
@ Reform them into a single pile A - AN
® Create 4 buckets and resort 3
Question: K
Is LSD always faster than MSD? N
7

14/14

-+ IHeA
wOIO@HO =0

Stack of Hats
Due: Tuesday, Jar&ai%ﬁtllingZZ at 10:00pm

The problem can be found and submitted at
https://pintia.cn/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

