
§7 Quicksort -- the fastest known sorting algorithm in practice

1. The Algorithm

void Quicksort (ElementType A[], int N)
{
 if (N < 2) return;
 pivot = pick any element in A[];
 Partition S = { A[] \ pivot } into two disjoint sets:

A1={ aS | a  pivot } and A2={ aS | a  pivot };
 A = Quicksort (A1, N1)  { pivot }  Quicksort (A2, N2);
}

13 81
92 43 65

31 57 26
75 0

13 81
92 43 65

31 57 26
75 0

13 43
31 57 26

0

13 43
31 57 26

0
65 81

92 75

81
92 75

0 13 26 31 43 570 13 26 31 43 57 65 75 81 9275 81 92

0 13 26 31 43 57 65 75 81 920 13 26 31 43 57 65 75 81 92




The best case T(N) = O()N log N

The pivot is placed at
the right place once

and for all.

1/14

§7 Quicksort

2. Picking the Pivot

 A Wrong Way: Pivot = A[0]

The worst case: A[] is presorted – quicksort will take
O(N2) time to do nothing 

 A Safe Maneuver: Pivot = random select from A[]

 random number generation is expensive

 Median-of-Three Partitioning:

Pivot = median (left, center, right)

Eliminates the bad case for sorted input and actually
reduces the running time by about 5%.

2/14

§7 Quicksort
3. Partitioning Strategy

8 1 4 9 0 3 5 2 7 65 92 86 9

i j

> >

j

<<

i i

<

i

>

j

<

i

<

i

<
>

j i

<

 Not too difficult if we carefully
implement it…What if there is a

key == pivot?

 How about stop i and j both
and then swap?

What will happen to
the sequence:
1, 1, 1, …, 1 ?

 Uh-oh, there will be many dummy swaps…
But hey! At least the sequence will be

partitioned into two equal-sized
subsequences.

Good point!
How about the other option –

that neither i nor j stops?

No swap… but then T(N) = …Then T(N) = O(N2).
So we’d better stop both i and j

and take some extra swaps.

3/14

§7 Quicksort
4. Small Arrays

Problem: Quicksort is slower than insertion sort for small
N ( 20).

Solution: Cutoff when N gets small (e.g. N = 10) and use
other efficient algorithms (such as insertion sort).

5. Implementation

void Quicksort(ElementType A[], int N)
{

Qsort(A, 0, N - 1);
/* A: the array */
/* 0: Left index */
/* N – 1: Right index */

}

4/14

§7 Quicksort

/* Return median of Left, Center, and Right */
/* Order these and hide the pivot */

ElementType Median3(ElementType A[], int Left, int Right)
{
 int Center = (Left + Right) / 2;
 if (A[Left] > A[Center])
 Swap(&A[Left], &A[Center]);
 if (A[Left] > A[Right])
 Swap(&A[Left], &A[Right]);
 if (A[Center] > A[Right])
 Swap(&A[Center], &A[Right]);
 /* Invariant: A[Left] <= A[Center] <= A[Right] */
 Swap(&A[Center], &A[Right - 1]); /* Hide pivot */
 /* only need to sort A[Left + 1] … A[Right – 2] */
 return A[Right - 1]; /* Return pivot */
}

5/14

§7 Quicksort

void Qsort(ElementType A[], int Left, int Right)
{ int i, j;
 ElementType Pivot;
 if (Left + Cutoff <= Right) { /* if the sequence is not too short */
 Pivot = Median3(A, Left, Right); /* select pivot */
 i = Left; j = Right – 1; /* why not set Left+1 and Right-2? */
 for(; ;) {

 while (A[+ +i] < Pivot) { } /* scan from left */
 while (A[– –j] > Pivot) { } /* scan from right */
 if (i < j)
 Swap(&A[i], &A[j]); /* adjust partition */
 else break; /* partition done */

 }
 Swap(&A[i], &A[Right - 1]); /* restore pivot */
 Qsort(A, Left, i - 1); /* recursively sort left part */
 Qsort(A, i + 1, Right); /* recursively sort right part */
 } /* end if - the sequence is long */
 else /* do an insertion sort on the short subarray */
 InsertionSort(A + Left, Right - Left + 1);
}

6/14

§7 Quicksort 6. Analysis
T(N) = T(i) + T(N – i – 1) + c N

 The Worst Case:
T(N) = T(N – 1) + c N T(N) = O(N2)

 The Best Case: [... ...]  [... ...]

T(N) = 2T(N / 2) + c N T(N) = O(N log N)

 The Average Case:
Assume the average value of T(i) for any i is 














1

0

)(
1 N

j

jT
N

cNjT
N

NT
N

j









 





1

0

)(
2

)(T(N) = O(N log N)

〖 Example〗 Given a list of N elements and an integer k.
Find the kth largest element.

Read Figure 6.16 on p.214
for the 5th algorithm on
solving this problem.

7/14

§8 Sorting Large Structures

Problem: Swapping large structures can be very much expensive.

Solution: Add a pointer field to the structure and swap pointers instead
– indirect sorting. Physically rearrange the structures at last
if it is really necessary.

list
key

table

[0]

d
0

[1]

b
1

[2]

f
2

[3]

c
3

[4]

a
4

[5]

e
5table 4 1 3 0 5 2The sorted list is

list [table[0]], list [table[1]], ……, list [table[n1]]

Note: Every permutation is made up of disjoint cycles.

list
key

table

[0]

d
4

[1]

b
1

[2]

f
3

[3]

c
0

[4]

a
5

[5]

e
2

temp = d
current = 0
next = 4

a
0

4
5

e
4

5
2

f
5

2
3

c
2

3d
3

In the worst case there are ? cycles and requires ?
record moves.

 N / 2  3N / 2

T = O(m N) where m is the size of a structure.

〖 Example〗 Table Sort

8/14

§9 A General Lower Bound for Sorting
【 Theorem 】 Any algorithm that sorts by comparisons only

must have a worst case computing time of (N log N).

Proof: K0  K1

K1  K2

K0  K2
stop

[0,1,2]

stop
[0,2,1]

stop
[2,0,1]

T F

T F

K0  K2

K1  K2
stop

[1,0,2]

stop
[1,2,0]

stop
[2,1,0]

T F

T F

T F

Decision tree for insertion sort on R0, R1, and R2

When sorting N distinct

elements, there are N! different
possible results.

Thus any decision tree must

have at least N! leaves.

If the height of the tree

is k, then N!  2k1 (# of
leaves in a complete

binary tree)

 k  log(N!) + 1

Since N!  (N/2)N/2 and log2 N!  (N/2)log2(N/2) =  (N log2
N)Therefore T(N) = k  c  N log2 N .

9/14

§10 Bucket Sort and Radix Sort

 Bucket Sort

〖 Example 〗 Suppose that we have N students, each has a
grade record in the range 0 to 100 (thus there are M = 101
possible distinct grades). How to sort them according to their
grades in linear time?

count
0 1 10088 Algorithm

{
 initialize count[];
 while (read in a student’s record)
 insert to list count[stdnt.grade];
 for (i=0; i<M; i++) {
 if (count[i])
 output list count[i];
 }
}

T(N, M) = O(M+N)

What if
M >> N ?

10/14

〖 Example 〗 Given N = 10 integers in the range 0 to 999 (M =
1000) Is it possible to sort them in linear time?

 Radix Sort
Input: 64, 8, 216, 512, 27, 729, 0, 1, 343, 125

0Bucket 1 2 3 4 5 6 7 8 9

Sort according to the Least Significant Digit first.

0Pass 1 1 512 343 64 125 216 27 8 729

Pass 2
0
1

512 343 64125
216 27

8 729

Pass 3

0
1
8

512216125

27

729343

64

Output: 0, 1, 8, 27, 64, 125, 216, 343, 512, 729

T=O(P(N+B))
where P is the
number of
passes, N is the
number of
elements to sort,
and B is the
number of
buckets.

T=O(P(N+B))
where P is the
number of
passes, N is the
number of
elements to sort,
and B is the
number of
buckets.

What if we sort
according to the Most
Significant Digit first?

§10 Bucket Sort and Radix Sort

11/14

 Ki
j ::= the j-th key of record Ri

 Ki
0 ::= the most significant key of record Ri

Suppose that the record Ri has r keys.

 Ki
r1 ::= the least significant key of record Ri

 A list of records R0, ..., Rn1 is lexically sorted with respect
to the keys K 0, K 1, ..., K r1 iff

.10),,,,(),,,(1
1

1
1

0
1

110  



 niKKKKKK r
iii

r
iii 

That is, Ki
0 = Ki+1

0, ... , Ki
l = Ki+1

l, Ki
l+1 < Ki+1

l+1 for some
l < r  1.〖 Example〗 A deck of cards sorted on 2 keys
K 0 [Suit]  <  <  < 
K 1 [Face value] 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < 10 < J < Q < K < A

Sorting result : 2 ... A 2 ... A 2 ... A 2 ... A

§10 Bucket Sort and Radix Sort

12/14

 MSD (Most Significant Digit) Sort

 Sort on K 0: for example, create 4 buckets for the suits

3


3








5


5






A


A



4


4





 Sort each bucket independently (using any sorting

technique)

   

§10 Bucket Sort and Radix Sort

13/14

§10 Bucket Sort and Radix Sort
 LSD (Least Significant Digit) Sort

 Sort on K 1: for example, create 13 buckets for the face
values

2


2






3


3








4


4






5


5






A


A


...

 Reform them into a single pile A


A


 3


3








2


2






 Create 4 buckets and resort

Question:
Is LSD always faster than MSD?

14/14

Bonus
Problem 2

 Stack of Hats

(2 points)Due: Tuesday, January 4th, 2022 at 10:00pm

The problem can be found and submitted at
 https://pintia.cn/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

