§6 Applications of Depth-First Search

/* a generalization of preorder traversal */

```
void DFS ( Vertex V ) /* this is only a template */
{ visited[ V ] = true; /* mark this vertex to avoid cycles */
    for ( each W adjacent to V )
        if (!visited[ W ] )
            DFS( W );
} /* T = O( |E| + |V| ) as long as adjacency lists are used */
```

1. Undirected Graphs


```
void ListComponents ( Graph G )
{ for ( each V in G )
    if (!visited[ V ] ) {
        DFS( V );
        printf("\n");
    }
    0 1 4 6 5 2 3
    7 8
```

2. Biconnectivity

points.

- v is an articulation point if G' = DeleteVertex(G, v) has at least 2 connected components.
- **♦ G** is a biconnected graph if G is connected and has no articulation
- Biconnected A biconnected component is a maximal biconnected subgraph.

Connected graph

Biconnected components

Note: No edges can be shared by two or more biconnected components. Hence E(G) is partitioned by the biconnected components of G.

Finding the biconnected components of a connected undirected G

Use depth first search to obtain a spanning tree of G

- > Find the articulation points in G
 - **†** The root is an articulation point iff it has at least 2 children
 - Any other vertex u is an articulation point iff u has at least 1 child, and it is impossible to move down at least 1 step and then jump up to u's ancestor.

· · · · · · · · · · · · · · · · · · ·	
$\min\{Low(w) $	w is a child of u },
$\min\{Num(w)\}$	$ (u, w)$ is a back edge $\}$

vertex	0	1	2	3	4	5	6	7	8	9
Num	4	.3	2	0	1	5	6	7	9	8
Low	4	0	0	0	0	5	5	5	9	8

Therefore, *u* is an articulation point iff

- (1) *u* is the root and has at least 2 children; or
- (2) u is not the root, and has at least 1 child such that $Low(child) \ge Num(u)$.

Please read the pseudocodes on p.327 and p.329 for more details.

3. Euler Circuits

- Draw each line exactly once without lifting your pen from the paper *Euler tour*
- Draw each line exactly once without lifting your pen from the paper, AND finish at the starting point *Euler curcuit*
- [Proposition] An Euler circuit is possible only if the graph is connected and each vertex has an even degree.
- [Proposition] An Euler tour is possible if there are exactly two vertices having odd degree. One must start at one of the odd-degree vertices.

§6 Applications of Depth-First Search

Note:

- The path should be maintained as a linked list.
- For each adjacency list, maintain a pointer to the last edge scanned.

$$T = O(|E| + |V|)$$

Find a simple cycle in an undirected graph that visits every vertex — *Hamilton cycle*