CHAPTER 6

SORTING

Comparison-
based sorting

81 Preliminaries

void X_Sort (ElementType A[], intN)

I* N must be a legal integer */
I* Assume integer array for the sake of simplicity */

[* '>’ and ‘<’ operators exist and are the only operations
allowed on the input data */

I* Consider integnal sorting only */

The entire sort can be done in
main memory

1/4

2/4

§2 Insertion Sort

void InsertionSort (ElementType A[], int N)
{

int j, P;

ElementType Tmp;

for(P=1; P<N; P++){
Tmp = A[P]; I* the next coming card */
for(j=P;j>0&&A[j-1]>Tmp;j-)
ALj1=A[j-1];
I* shift sorted cards to provide a position
for the new coming card */
A[j] = Tmp; [* place the new card at the proper position */

} I* end for-P-loop */

The worst case: Input A[] is in reverse order. T(N) = O(N?)
The best case: Input A[] is in sorted order. T(N)=O(N)

3/4

83 A Lower Bound for Simple Sorting Algorithms

[Definition] An inversion in an array of numbers is any
ordered pair (i, j) having the property that i <j but A[i] >
Aljl.

(Example] Input list 34, 8, 64, 51, 32, 21 ha$®

INYGHSH)RS4, 32) (34, 21) (64, 51) (64, 32) (64, 21) (51, 32) (51, 21) (32,
21)

There are 9 swaps needed to sort this list by insertion sort.

Swapping two adjacent elements that are
out of place removes exactly one inversion.

T(N,I)=0(I+N ere I is the number of inversions

in the original array. Fast if the list is almost
sorted.

4/4

83 A Lower Bound

[Theorem] The average number of inversions in an
array of N distinct numbersis N(N-1)/4.

[Theorem] Any algorithm that sorts by exchanging
adjacent elements requires 2 (N?) time on average.

Smart guy! To run faster, we just -aps elements
have to eliminate more than just & apart?
one inversion per exchange.

	Slide 1
	Slide 2
	Slide 3
	Slide 4

