

CHAPTER 6

SORTING

§1 Preliminaries

void X_Sort (ElementType A[], int N)

/* N must be a legal integer */

/* Assume integer array for the sake of simplicity */

/* ‘>’ and ‘<’ operators exist and are the only operations
allowed on the input data */

Comparison-
based sorting

/* Consider internal sorting only */

The entire sort can be done in
main memory

1/4

§2 Insertion Sort

void InsertionSort (ElementType A[], int N)
{
 int j, P;
 ElementType Tmp;

 for (P = 1; P < N; P++) {
Tmp = A[P]; /* the next coming card */
for (j = P; j > 0 && A[j - 1] > Tmp; j--)
 A[j] = A[j - 1];
 /* shift sorted cards to provide a position

 for the new coming card */
A[j] = Tmp; /* place the new card at the proper position */

 } /* end for-P-loop */
}

The worst case: Input A[] is in reverse order. T(N) = O(N2)

The best case: Input A[] is in sorted order. T(N) = O(N)

2/4

§3 A Lower Bound for Simple Sorting Algorithms

【 Definition 】 An inversion in an array of numbers is any
ordered pair (i, j) having the property that i < j but A[i] >
A[j].

〖 Example〗 Input list 34, 8, 64, 51, 32, 21 has
inversions.

9
(34, 8) (34, 32) (34, 21) (64, 51) (64, 32) (64, 21) (51, 32) (51, 21) (32,

21)
There are swaps needed to sort this list by insertion sort.9

Swapping two adjacent elements that are
out of place removes exactly one inversion.

T (N, I) = O() where I is the number of inversions
in the original array.

I + N

Fast if the list is almost
sorted.

3/4

§3 A Lower Bound

【 Theorem 】 The average number of inversions in an
array of N distinct numbers is N (N  1) / 4.

【 Theorem 】 Any algorithm that sorts by exchanging
adjacent elements requires  (N2) time on average.

What does this theorem tell you?
For a class of algorithms that performs

only adjacent exchanges, we’ll have to take
O(N2) time to sort them.

Is that all?
How can you speed it up?

Uhhh… hashing?Hey! We are talking about
comparison-based sorting.

You must do comparisons, and?

… and swaps elements
that are far apart?

Smart guy! To run faster, we just
have to eliminate more than just

one inversion per exchange.

4/4

	Slide 1
	Slide 2
	Slide 3
	Slide 4

