
§4 Open Addressing

2. Quadratic Probing f (i) = i 2 ; /* a quadratic function */f (i) = i 2 ; /* a quadratic function */

【 Theorem】 If quadratic probing is used, and the table size is
prime, then a new element can always be inserted if the table is at
least half empty.

Proof: Just prove that the first TableSize/2 alternative locations are
all distinct. That is, for any 0 < i  j  TableSize/2, we have

 (h(x) + i 2) % TableSize  (h(x) + j 2) % TableSize

Suppose: h(x) + i 2 = h(x) + j 2 (mod TableSize)

then: i 2 = j 2 (mod TableSize)

 (i + j) (i  j) = 0 (mod TableSize)

TableSize is prime either (i + j) or (i  j) is divisible by TableSize

Contradiction !

For any x, it has  TableSize/2  distinct locations into which it can go.
If at most TableSize/2 positions are taken, then an empty spot can
always be found.

1/6

§4 Open Addressing

Note: If the table size is a prime of the form 4k + 3, then the
quadratic probing f(i) =  i 2 can probe the entire table.

Note: If the table size is a prime of the form 4k + 3, then the
quadratic probing f(i) =  i 2 can probe the entire table.

Read Figures 7.15 - 7.16 for detailed
representations and implementations of initialization.

Position Find (ElementType Key, HashTable H)
{ Position CurrentPos;
 int CollisionNum;
 CollisionNum = 0;
 CurrentPos = Hash(Key, H->TableSize);
 while(H->TheCells[CurrentPos].Info != Empty &&

H->TheCells[CurrentPos].Element != Key) {
CurrentPos += 2 * ++CollisionNum  1;
if (CurrentPos >= H->TableSize) CurrentPos  = H->TableSize;

 }
 return CurrentPos;
}

What if these
two conditions
are switched?

f(i)=f(i1)+2i1
where 2* is really

a bit shift

Faster than
modWhat is

returned?

2/6

§4 Open Addressing

void Insert (ElementType Key, HashTable H)
{
 Position Pos;
 Pos = Find(Key, H);
 if (H->TheCells[Pos].Info != Legitimate) { /* OK to insert here */

H->TheCells[Pos].Info = Legitimate;
H->TheCells[Pos].Element = Key; /* Probably need strcpy */

 }
}

Question: How to delete a key?

Note:  Insertion will be seriously slowed down if there are too
many deletions intermixed with insertions.

  Although primary clustering is solved, secondary
clustering occurs – that is, keys that hash to the same position
will probe the same alternative cells.

Note:  Insertion will be seriously slowed down if there are too
many deletions intermixed with insertions.

  Although primary clustering is solved, secondary
clustering occurs – that is, keys that hash to the same position
will probe the same alternative cells.

3/6

§4 Open Addressing3. Double Hashing

f (i) = i * hash2(x); /* hash2(x) is the 2nd hash function */f (i) = i * hash2(x); /* hash2(x) is the 2nd hash function */

 make sure that all cells can be probed. hash2(x)  0 ;

 Tip: hash2(x) = R – (x % R) with R a prime smaller than
TableSize, will work well.

Note:  If double hashing is correctly implemented,
simulations imply that the expected number of
probes is almost the same as for a random collision
resolution strategy.

  Quadratic probing does not require the use of a
second hash function and is thus likely to be
simpler and faster in practice.

Note:  If double hashing is correctly implemented,
simulations imply that the expected number of
probes is almost the same as for a random collision
resolution strategy.

  Quadratic probing does not require the use of a
second hash function and is thus likely to be
simpler and faster in practice.

4/6

§5 Rehashing

 Oh come on! Haven’t we had
enough hashing methods?

 Why do we need rehashing ?

Because
 I enjoy giving you headaches …

Just kidding 
Say which probing method

do you like?

 Practically speaking
 I would prefer to use quadratic hashing…

What, anything wrong with it?

What will happen
 if the table is more than half full?

 Uhhhh…
insertion might fail Then what can we do?

 Build another table that is about twice as big;
 Scan down the entire original hash table for

non-deleted elements;
 Use a new function to hash those elements

into the new table.

If there are N keys in the table, then T (N) = O(N)

Question: When to rehash?

 Answer:
 As soon as the table is half full
 When an insertion fails
 When the table reaches a certain load factor

5/6

§5 Rehashing

Note: Usually there should have been N/2 insertions
before rehash, so O(N) rehash only adds a
constant cost to each insertion.

 However, in an interactive system, the
unfortunate user whose insertion caused a
rehash could see a slowdown.

Note: Usually there should have been N/2 insertions
before rehash, so O(N) rehash only adds a
constant cost to each insertion.

 However, in an interactive system, the
unfortunate user whose insertion caused a
rehash could see a slowdown.

Read Figures 7.23
for detailed implementation of rehashing.

6/6

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

